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ABSTRACT 

The National Flood Insurance Program (NFIP), which is run by the U.S. Federal Emergency 

Management Agency (FEMA), is presently under huge debt to the U.S. treasury. The debt is 

primarily caused by low flood insurance take-up rate, low willingness to pay for flood insurance, 

and large payouts after major disasters. Addressing this insolvency problem requires the NFIP to 

understand (1) what drives the demand for flood insurance so that it can be increased, (2) how risk 

factors contribute towards large flood insurance payouts so that effective risk reduction policies 

can be planned, and (3) how to predict the future flood insurance payouts so that the NFIP can be 

financially prepared. This research has answered these three fundamental questions by developing 

empirical models based on historical data. To answer the first question, this research has developed 

a propensity score-based causal model that analyzed one of the key components that influences 

the demand for flood insurance – the availability of post-disaster government assistance. It was 

found that the availability of the federal payout in a county in a year increased the number of flood 

insurance policies by 5.2% and the total insured value of the policies by 4.6% in the following 

year. Next, this research has developed Mixed Effects Regression model that quantified the causal 

relationships between the annual flood insurance payout in a county and flood related risk factors 

such as flood exposure, infrastructure vulnerability, social vulnerability, community resilience, 

and the number of mobile homes in the county. Based on the derived causal estimates, it was 

predicted that climate change, which is expected to increase flood exposure in coastal counties, 

will increase the annual NFIP payout in New Orleans, Louisiana by $2.04 billion in the next 30 

years. Lastly, to make the NFIP financially prepared for future payouts, this research has developed 

a predictive model that can predict the annual NFIP payout in a county with adequate predictive 

accuracy. The predictive model was used to predict the NFIP payout for 2021 and it was able to 

predict that with a 9.8% prediction error. The outcomes of this research create new knowledge to 

inform policy decisions and strategies aimed at fortifying the NFIP. This includes strategies such 

as flood protection infrastructure, tailored disaster assistance, and other interventions that can 

bolster flood insurance uptake while mitigating the risk of substantial payouts. Ultimately, this 

research contributes to sustaining the NFIP's ability to provide vital flood insurance coverage to 

millions of Americans. 
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 INTRODUCTION 

Natural hazards cause extensive damage to human life, infrastructure, property, economy, 

etc. Historical data from Munich Re shows that the frequency of natural hazards has increased 

steadily since 1980. Since then, disasters due to natural hazards have caused a cumulative loss of 

$5.2 trillion globally (Munich Re 2020). Among the natural hazards, the losses due to floods are 

by far the highest on a global scale (Colgan et al. 2017, Dubbelboer et al. 2017, CRED-UNISDR 

2015). The U.S. is no exception to that (Munich Re 2020). In the U.S., the cumulative loss from 

floods between 1988 and 2017 has been $199 billion (Davenport et al. 2021). 

Quinn et al. (2019) have analyzed 40 years of historical flood data and have found that 

there is a 1% chance of the losses from fluvial (river) floods exceeding $78 billion in any given 

year in the U.S. Additionally, there is a 0.1% chance of the cost exceeding $136 billion. Armal et 

al. (2020) have stated that the direct flood losses in the U.S. have risen from $4 billion annually in 

1980 to $17 billion annually between 2010 and 2018. Jevrejeva et al. (2018) have forecasted that 

the global flood loss can exceed an additional $1.4 trillion annually if the rise of global temperature 

is not maintained at 1.5 ◦C and reaches 2 ◦C. This can potentially cause an increase of the global 

sea level by an additional 11 cm. Due to global warming the precipitation extremes have changed 

across many regions in the U.S. Davenport et al. (2021) has utilized historical flood damage data 

and found that between 1988 and 2017, the cumulative impact of the precipitation change has been 

$73 billion. Wing et al. (2022) estimated a $32.1 billion annual loss from floods in the U.S. based 

on 2020’s climate scenarios. They also found that the flood losses are borne disproportionately by 

the poorer communities.  

In 2020, the 1st Street Foundation published a report that estimated the number of properties 

that are located in 100-year flood zones (1st Street Foundation 2020). Their estimation of the 

number of properties situated in 100-year flood zone was around 1.7 times compared to the U.S. 

Federal Emergency Management Agency (FEMA) 100-year flood zone designation. They reported 

that approximately 40% of the homeowners who live in the 100-year flood zone are currently 

uninformed of or miscalculating the flood risk they face because they are not classified as being 

within the 100-year flood zone by FEMA. Figure 1.1. shows the expected changes in the number 

of properties located in the 100-year flood zone in 20 major U.S. cities with the highest flood risk 

based on the model developed by 1st Street Foundation (2020). It can be noticed that in all twenty 
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cities the number of properties within a 100-year flood zone will increase by 2050, due to climate 

change.  

 
Figure 1.1 Change in Number of Properties Located in 100-year Flood Zones 

To mitigate the risk of natural hazards, countries use different risk finance strategies. They 

can be ex-ante, ex-post, or the combination of the two. Ex-ante strategies include risk transfer 

instruments like insurance, reinsurance, catastrophe bonds, and ex-ante budget allocations whereas 

ex-post strategies consist of contingent credit, emergency ex-post budget allocation, and ex-post 

direct credits like borrowings and post-disaster debts (World Bank Group 2016). Though the 

sustainability of ex-post strategies has been questioned (Lester and Gurenko 2004), the World 

Bank recommends a layered combination of different strategies to be the most efficient (Gurenko 

and Mahul 2003, Ghesquiere and Mahul 2010, GFDRR and World Bank Group 2014). Although 

ex-ante risk transfer instruments such as insurance are available in many countries, there is a vast 

gap between total economic and insured losses. Data from Munich Re show that more than 70% 

of the estimated $5.2 trillion global loss from floods since 1980 were uninsured (Munich Re 2020). 

Governments are often referred to as “the insurer of last resort” since they are assumed to 

accomplish the requirements of filling up this gap in finances after catastrophes. At micro level, 
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countries and governments use risk sharing instruments like flood insurance where businesses and 

homeowners insure themselves from possible flood losses by purchasing flood insurance from 

government or private organizations. Different countries have different policies regarding flood 

insurance for their citizens. Although purchasing flood insurance are compulsory in some countries 

(Romania, Poland, Iceland, etc.), it is voluntary in most of the world (Atreya et al. 2015).  

1.1 Research Background and Needs 

The National Flood Insurance Program (NFIP), which is run by the Federal Emergency 

Management Agency (FEMA), started in 1968 under the National Flood Insurance Act. The 

reluctance of private insurers to provide flood insurance created the need for the NFIP (Kousky et 

al. 2020). Purchasing flood insurance was voluntary till 1973. After that, buying flood insurance 

was mandated for properties with mortgage from a federally regulated or backed lender that are 

located in a NFIP participating community and within 100-year flood zone by the Flood Disaster 

Protection Act of 1973. While the Federal government offers flood insurance to the households, it 

has been observed in the aftermath of the flood related disasters that most of the sufferers are 

uninsured or underinsured (Kousky 2011). A congressional research report published in 2019, 

Horn (2019), showed the flood insurance take up rate for some of the recent flood events, which 

is shown in Figure 1.2. It recorded the average NFIP take up rate in the Special Flood Hazard Area 

(SFHA), i.e., 100-year flood zones for multiple flood events such as the South Carolina Flood in 

2015 (30%), Louisiana Flood in 2016 (31%), Hurricane Harvey in Texas (21%), Hurricane Irma 

in Florida (31%). It can be noticed that the average take-up rate across the counties, which cover 

more area than 100-year flood zones, is even lower than that of SFHA. Munich Re reported in 

2020 that there were 14.6 million properties in the U.S. that were at substantial flood risk, i.e., 

located in 100-year flood zone. However, historical records show that in 2020, there were 

approximately 4 million active NFIP policies in the U.S., which also demonstrates the low take-

up rate of flood insurance in the U.S. Moreover, it has also been found that NFIP policies are often 

short lived, i.e., they do not get renewed (Michel-Kerjan et al. 2012). 

Due to the low flood insurance take-up rate, the U.S. federal government, as the insurer of 

last resort, compensates the disaster survivors who are underinsured and/or uninsured through 

FEMA managed Individual Assistance (IA) program. The Individuals and Households Program 

(IHP) within IA is the primary way FEMA supports disaster survivors (Webster 2019). IHP 
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provides direct financial aid to qualified individuals and households who are underinsured or 

uninsured and have serious needs of support as a result of a presidentially declared emergency or 

a major disaster. To be eligible to receive IHP assistance, an applicant must furnish that (1) the 

damage is uninsured, (2) he or she is a citizen (or qualified alien), and (3) the property is the 

primary residence (Kousky and Shabman 2012).  

 
Figure 1.2 Average Flood Insurance Penetration Rate after Major Disasters 

The demand for flood insurance is influenced by several factors such as the premium level, 

household income, damage from recent flood events, population, post-disaster federal support, etc. 

(Browne and Hoyt 2000, Kousky et al. 2018, Landry et al. 2021). There is a general consensus 

about how these factors influence the demand for flood insurance except for post-disaster federal 

support. It has been found that the availability of post-disaster government support often crowds 

out the demand for flood insurance, an event popularly known as Charity Hazard (Browne and 

Hoyt 2000, Raschky and Weck-Hannemann 2007). In the U.S., the federal regulations require that 

the IHP recipients maintain flood insurance for future assistance. Therefore, IHP should not crowd 
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out the demand for flood insurance. Despite that, researchers have found conflicting evidence on 

the existence of charity hazard in the U.S. flood insurance market.  

Understanding how the post-disaster federal assistance influences the flood insurance take-

up rate in the U.S. is essential as it can significantly influence the cost of flood events to the federal 

government. If the IHP assistance crowds out flood insurance, then in future uninsured flood losses 

will greatly increase as more households will rely on the federal government instead of purchasing 

flood insurance. On the other hand, this can also increase the risk of large payouts to the NFIP 

because only the properties with high flood exposure might be left in the pool of NFIP due to 

presence of asymmetrically used information between insurer and insured. Bradt et al. (2021) have 

provided with strong evidence supporting the existence of asymmetrically used information in the 

NFIP. Furthermore, due to the increasing frequency of natural hazards, this domino effect of 

charity hazard could lead to further insolvency issues for the NFIP. Thus, this scenario increases 

the challenge of running both NFIP and IHP programs. Hence, it is essential to understand whether 

the Charity Hazard exists in the U.S. flood insurance market or not.  

Additionally, NFIP had a cumulative debt of $20.5 billion to the U.S. Treasury as of 2020 

after the federal government forgave $16 billion debt in 2016 (Grigg 2019, Horn 2020). The debt 

could be partly attributed to the low take-up rate. Moreover, it was projected that the annual deficit 

of collected premium and the expected payout would remain $1.4 billion in future (CBO 2017). 

This problem cannot be solved simply by raising the cost of insurance premiums. Previous 

researchers have found that the price elasticity of the demand for flood insurance is inelastic, which 

means that the demand for flood insurance is relatively insensitive to the price (Browne and Hoyt 

2000, Landry and Jahan-Parvar 2011). However, with a higher cost of flood insurance premium, 

the demand for flood insurance might reduce further and NFIP might end up with the adverse 

selection problem, where only the households with high flood exposure purchase the flood 

insurance. The adverse selection problem, which arises due to the presence of asymmetrically used 

information between insurer and insured, is expected to increase the likelihood of future payouts. 

On the other hand, NFIP as a government sponsored program is the insurer of last resort even for 

the households that are deemed uninsurable by private flood insurers (FEMA 2015, Horn and 

Webel 2021). This restricts NFIP’s ability to cherry pick households to reduce the likelihood of 

future payouts. Under this circumstances, it is essential that NFIP plans for flood risk reduction.  
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To summarize, NFIP is faced with two monumental challenges from climate change 

induced increased frequency and severity of natural hazards. First, the low flood insurance take-

up rate due to which, the uninsured losses from future floods with potentially increased severity is 

expected to increase. Second, the increased likelihood of more frequent large payouts caused by 

potentially increased frequency and severity of future floods that might engender insolvency of 

NFIP. The rising cost of running the NFIP and the potential of increased uninsured and/or 

underinsured flood losses presents an overwhelming fiscal challenge to the U.S. federal 

government, already burdened with a debt over $32 trillion in 2023 (U.S. Treasury 2023). This 

research has tried to address that challenge by answering three fundamental questions (1) how the 

flood insurance take-up rate can be improved (2) how future payouts can be predicted, and (3) how 

future payouts can be reduced through flood risk reduction.  

1.2 Research Statement 

This research is conducted to assist the U.S. federal government in planning strategies and/or 

policies to improve the flood insurance penetration and keep the program solvent despite the 

increased intensity of natural hazards in future. As explained earlier, the solution cannot be simply 

achieved by increasing the flood insurance premium as it might increase the likelihood of large 

payouts due to adverse selection problems. On the other hand, decreasing the insurance premium 

to increase the flood insurance demand without any additional measure will reduce the revenue 

generated due to the existing inelastic relationship between price and demand for flood insurance 

(Browne and Hoyt 2000, Landry and Jahan-Parvar 2011). Reduced revenue while increasing 

intensity of natural hazards might not keep the program solvent in future. Under this scenario, it is 

essential to plan for flood risk reduction to keep the NFIP solvent in the long term so that its 

existence is not questioned and more importantly it can continue to fulfill its aim to mitigate the 

effect of flooding by providing affordable flood insurance. Additionally, through flood risk 

reduction if the government can reduce the likelihood of large payouts, it can also reduce the cost 

of flood insurance premium for the policy holders, which might increase the flood insurance take-

up rate. Based on the research question and the proposed solution, the thesis statement is formed 

as below. 

To mitigate flood risk through flood insurance, it is essential to increase the flood insurance 

take-up rate and simultaneously decrease the likelihood of large payouts. This can only be achieved 
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through flood risk reduction. Effective flood risk reduction policies can be more efficiently 

planned if the decision makers have the knowledge of the contributing factors of flood insurance 

demand and payouts based on data driven robust models. 

1.3 Research Objectives 

As explained in the previous sections, this research aims to answer three fundamental 

questions regarding the NFIP (1) how the flood insurance take-up rate can be improved (2) how 

future payouts can be predicted, and (3) how future payouts can be reduced through flood risk 

reduction. These three research questions explain the major research objectives. They are as 

follows.  

• Objective 1 – Understand the factors that impact the demand for flood insurance in the U.S., 

particularly the availability of post-disaster federal assistance in terms of IHP payouts. It is 

important to understand how the availability of the IHP assistance influences the demand for 

flood insurance because it can greatly influence the cost of future floods to the U.S. federal 

government as explained previously. The outcomes of objective 1 can help in designing 

tailored disaster assistance policies to increase the demand for flood insurance in the U.S.   

• Objective 2 – Quantify the causal relationship between different flood related risk factors such 

as flood exposure, infrastructure vulnerability, social vulnerability, etc., and flood insurance 

payout in the U.S. The causal relationships derived in this research will be helpful in planning 

for effective flood risk reduction measures that can keep future flood insurance payouts under 

control. Additionally, it will also help in estimating the benefits from different flood risk 

reduction initiatives such as improving infrastructure resilience, property buyout, etc. The 

outcomes of objective 2 can help in designing risk reduction strategies and/or policies that can 

reduce future payouts after large disasters.  

• Objective 3 – Develop a model that can predict the annual NFIP payout with adequate 

predictive accuracy. The proposed model can be used to estimate the expected NFIP payout in 

different future climate scenarios, which can help in testing different counterfactuals. 

Moreover, NFIP payouts reflect the insured flood losses. If insured flood losses can be 

predicted, it can be useful to predict the uninsured flood losses as well, which can further be 

used to estimate the expected post-disaster IHP assistance. The outcome of objective 3 can 

ultimately help the NFIP to be better prepared for future payouts.  
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Once these objectives are achieved, this research will be able to answer the identified research 

questions and subsequently provide pathways to improve the flood insurance penetration and 

reduce the likelihood of large future payouts to keep NFIP solvent in the long term.  

1.4 Research Scope 

The successful completion of the research by fulfilling the research objectives requires 

defining specific research scope. First, the models will be developed at a macro level. It has been 

explained before that the research aims to solve the insolvency problem to ensure long-term 

sustainability of the NFIP. Therefore, the problem has been investigated from the perspective of 

the primary insurer, i.e., NFIP, which is also the same entity as the government. Hence, macro 

level analyses were deemed more appropriate for this research.  

In terms of spatial scope, this research will concentrate on the 50 U.S. states and the District 

of Columbia. The analysis will not consider the U.S. territories such as Puerto Rico, Guam, U.S. 

Virgin Islands, Northern Mariana Islands, American Samoa, etc., as some of the data were not 

available for these territories. Moreover, these territories are fundamentally different from the U.S. 

states in the sense that not all U.S. laws are applicable to the territories (Webber 2017). Thus, they 

are not included in the research.  

The research questions require collecting historical data. Therefore, recent historical data 

between 2016 and 2021 will be collected and used in this research. The models will be developed 

at the county level (i.e., the spatial unit is county) using annual data (i.e., the temporal unit is year). 

So, for the Objective 1, the factors that influence the annual demand for flood insurance in county 

will be analyzed. For Objective 2, causal relationships between flood risk factors and annual flood 

insurance payout in a county will be quantified. Lastly, for Objective 3, the proposed model will 

be able to predict the expected annual flood insurance payout in a county.  

For Objective 1, this research will only analyze the influence of post-disaster federal 

assistance on the annual flood insurance enrollment in a county. The other factors that influence 

the demand for flood insurance such as premium price, household income, previous experience 

with floods, etc., will not be analyzed as there is a general consensus among the researchers on 

how these factors influence the demand for flood insurance (Browne and Hoyt 2000, Kousky et al. 

2018, Landry et al. 2021). Thus, those factors have not been included in the scope of this research. 

The post-disaster federal assistance will be quantified in terms of the annual IHP payout in a county. 
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It has been explained before that IHP assistance is the primary way FEMA supports disaster 

survivors who are underinsured or uninsured (Webster 2019). Hence, focus will be limited to the 

IHP assistance only.  

 For Objective 2, the research plans to quantify the causal relationships between flood 

related risk factors such as flood exposure, infrastructure vulnerability, social vulnerability, etc., 

and the annual flood insurance payout in a county. It is important to note that there is no exhaustive 

list of flood risk factors. As a result, this research will only focus on the risk factors that have 

appeared the most in previous literature and can be controlled through human interventions. This 

has led to five controllable factors that influence the extent of flood losses in a region. They are (1) 

flood exposure, (2) infrastructure vulnerability, (3) social vulnerability, (4) community resilience, 

and (5) the number of mobile homes in the county. 

 The third and final objective of this research is to develop a model that can predict the 

annual flood insurance payout with adequate accuracy. The model will be developed using five 

years of data between 2016 and 2020 and tested on 2021 data. While there is no agreement in the 

existing literature on acceptable predictive accuracy, models will be considered adequate if the 

percentage error is less than ten percent. To achieve that, different regression techniques will be 

adopted, and their results will be compared for identifying the best model that can fulfill the ten 

percent requirement.  

1.5 Research Data 

To answer the identified three research questions, this research collected historical data between 

2016 and 2021 from several publicly available data sources such as Federal Emergency 

Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. 

Census Bureau, Centers for Disease Control and Prevention (CDC), etc., as shown in Table 1.1. 

All the collected data were aggregated at the county level to perform the analysis. It is important 

to note that some of the datasets shown in Table 1.1 were not available for six years between 2016 

and 2021. In such circumstances, different assumptions were made, which have been discussed in 

detail in later chapters. Moreover, the data cleaning and preprocessing steps corresponding to each 

research question have also been explained in detail in chapter three, four, and five of this 

dissertation. This section only lists the sources of the collected data.  
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Table 1.1 Sources of the Collected Data 

No. Data Data Source 

1 NFIP Payout FEMA’s FIMA NFIP Redacted Claims dataset 

2 IHP Payout FEMA’s Registration Intake and Individuals Household 
Program dataset 

3 Public Assistance (PA) 
Payout FEMA’s PA Funded Project Details dataset 

4 Precipitation NOAA’s National Centers for Environmental information 

5 Flood Damage NOAA’s Storm Event Database 

6 County Area U.S. Census Bureau’s American Community Survey 

7 Population U.S. Census Bureau’s American Community Survey 

8 Median Building Age U.S. Census Bureau’s American Community Survey 

9 Median Building Value U.S. Census Bureau’s American Community Survey 

10 Percentage Occupancy U.S. Census Bureau’s American Community Survey 

11 Education Level U.S. Census Bureau’s American Community Survey 

12 Labor Force Participation U.S. Census Bureau’s American Community Survey 

13 Median Household Income U.S. Census Bureau’s American Community Survey 

14 Federal Mortgage U.S. Federal Housing Finance Agency 

15 No. of Mobile Homes U.S. Census Bureau’s American Community Survey 

16 Flood Exposure FEMA’s National Risk Index for Natural Hazards 

17 Social Vulnerability U.S. Centers for Disease Control and Prevention 

18 Community Resilience 
University of South Carolina’s Baseline Resilience 

Indicators for Communities (BRIC) dataset (Cutter et al. 
2014) 

19 Flood Insurance Policies 
and Total Insured Value 

FEMA’s National Flood Insurance Program (NFIP) 
Reinsurance Placement Information 
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1.6 Research Methodology 

Figure 1.3. shows the methodological framework that has been adopted in this research. It 

should be noted that each research question and objective have a specific research methodology 

that has been discussed in detail in the following chapters. This section provides a summary of the 

methodological framework. It starts with the review of the existing literature on the research topic. 

The reviewed literature covers multiple domains of research such as historic flood losses, flood 

loss estimation, data-driven flood risk quantification, flood insurance, federal assistance program, 

charity hazard, flood risk reduction, etc. The reviewed literature facilitated formulating the 

research questions and the scope. Next, relevant data was collected. As explained previously, data 

was collected for six years between 2016 and 2021 from different publicly available data sources 

like U.S. Federal Emergency Management Agency’s open data portal, the National Oceanic and 

Atmospheric Administration’s database, U.S. Census Bureau, U.S. Centers for Disease Control 

and Protection, etc. All the collected data was cleaned and aggregated at the county level for the 

analysis.  

The first research objective tests the existence of charity hazard in the U.S. flood insurance 

market. To be more specific, the first objective answers two questions (1) how the NFIP enrollment 

differs between the counties that received IHP payout and the counties that did not receive the IHP 

payout despite the declaration of major flood related disaster thus making them eligible to receive 

IHP assistance and (2) how different levels of IHP payout influences the NFIP enrollment in a 

county. To answer these questions, this research has used the collected data in a Propensity Score 

Matching (PSM) method to answer the first research question and Generalized Propensity Score 

(GPS) method to answer the second research question. The outcome of objective 1 infers whether 

the IHP assistance crowds out the demand for NFIP or not.  

In the second objective, this research has developed an empirical model that quantifies the 

causal relationship between annual flood insurance payout and different flood related risk factors 

such as flood exposure, infrastructure vulnerability, social vulnerability, community resilience, 

number of mobile homes, etc., by using historical data for six years between 2016 and 2021 in a 

Linear Mixed Effects Regression model. Although it is known that the identified flood risk factors 

influence the flood insurance payout, the proposed model quantifies that causal relationship while 

considering necessary control variables. 
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Figure 1.3 Methodological Framework 

In Objective 3, a prediction model that can predict the annual NFIP payout in a county 

based on different factors such as flood damage, flood exposure, infrastructure vulnerability, social 

vulnerability, community resilience, number of NFIP policies, number of NFIP claims, total 

insured value, etc., has been developed using five years of historical NFIP payout data between 

2016 and 2020 by adopting three regression techniques (1) Ordinary Least Square Regression, (2) 

Robust Regression, and (3) Generalized Linear Model. The fourth and the final ensemble model 

uses the outcomes of these three regression models to generate its own predictions. The ensemble 

model was used to predict the annual flood insurance payout of the flood affected counties for the 

year 2021.  
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1.7 Expected Outcomes 

The expected outcomes of the research are listed below.  

• First, the research will analyze the influence of IHP assistance on flood insurance enrollment. 

The outcome will reflect the difference between flood insurance enrollment in a county that 

received IHP assistance and a county that did not receive the IHP assistance. This difference 

will quantify the Average Treatment Effect (ATE) of the IHP assistance on flood insurance 

enrollment. ATE reflects the average difference between the treated and the non-treated groups. 

Next, the research will develop a dose response function that demonstrates the expected 

changes in flood insurance enrollment for different levels of IHP assistance. The dose response 

function will estimate the Average Treatment Effect on the Treated (ATT).  

• Second, this research will quantify the causal relationship between flood risk factors and the 

annual flood insurance payout in a county. Although it is known that the identified flood risk 

factors affect the extent of flood damage and subsequently the extent of flood insurance claims, 

this research will quantify that influence. The outcome will be the coefficients that will explain 

the expected changes in the annual NFIP payout for a unit change in the flood risk factors.  

• The derived regression equation that explains the causal relationships between the flood risk 

factors and the annual flood insurance payout while considering the required control variables 

can be used as an objective function for optimizing the annual flood insurance payout through 

the implementation of different flood risk reduction strategies and/or policies.  

• Lastly, the proposed prediction model will be able to predict the annual flood insurance payout 

with adequate accuracy so that it can be used by the disaster management agencies in 

estimating the extent of flood insurance claims in a future year based on different climate 

scenarios. The proposed prediction model is expected to facilitate a stakeholder centric flood 

loss estimation. Like other natural hazards, flood losses are also shared among the stakeholders. 

Peng et al. (2014) and Wang et al. (2020) have listed four classes of stakeholders who are 

associated with losses from natural hazards. They are households, primary insurers, reinsurers, 

and governments. However, the flood loss is not necessarily shared equally among the 

stakeholders. There are several factors that influence this cost sharing such as government’s 

policy regarding flood insurance, insurance penetration rate, risk transfer to reinsurance, etc. 

Therefore, a stakeholder-centric flood loss and flood risk assessment is more insightful than a 

generic one as it reflects the true cost of floods to each class of stakeholder. Although there is 
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plethora of flood loss and flood risk models, analysis on flood loss and flood risk from the 

perspective of a stakeholder is relatively underexplored. The proposed prediction is expected 

to be utilized to estimate flood loss from an insurer’s perspective.  

1.8 Dissertation Organization 

This dissertation is organized in six chapters. The first chapter introduces the research 

background, needs, and statement. It also explains the research data, scope, methodology, and 

expected outcomes.  

The second chapter explains the state of the art on this research topic and the point of 

departure from the existing body of knowledge. As explained previously, the scope of the research 

required review of existing literature on different subjects such as flood risk, flood insurnace, data-

driven models, flood risk reduction, causal models, etc. They have been explained in detail in 

chapter 2.  

The third chapter focuses on understanding the effect of one of the key factors that 

determine the demand for flood insurance in the U.S. The chapter tested the hypothesis that post-

disaster IHP assistance affects the demand for flood insurance in the U.S. To do that, this research 

has conducted analysis to understand the causality between post-disaster federal assistance and 

flood insurance enrollment in the flood affected counties in the U.S. In the first part, the treatment 

variable has been considered as binary to compare the effect of the availability of federal assistance 

to that of non-availability of federal assistance in a flood affected county by using propensity score 

matching method. Next, the treatment variable was considered continuous and was used in a 

generalized propensity score method to develop a dose response function, i.e., a function that 

depicts the changes in the flood insurance enrollment based on different levels of IHP assistance.  

The fourth chapter adresses the question on how to reduce the flood insurnace payout from 

future disasters. The thesis statement claims that flood risk reduction can reduce flood insurance 

payouts. To prove that, it is essential to establish the causal link between flood risk factors and 

flood insruance payout. Therefore, the fourth chapter presents a causal model that quantifies the 

causal relationship between flood risk factors and the flood insurance payout in the U.S. The flood 

risk factors that have been considered in this research are flood exposure, infrastructure 

vulnerability, social vulnerability, community resilience, and the number of mobile homes. 

Historical data for the annual flood insurance payout, flood risk factors, and other control variables 
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were used in a Mixed Effects Regression model to derive the empirical relationships. The 

regression model expressed the natural logarithm of the annual flood insurance payout in a county 

based on the flood risk factors and control variables. 

The fifth chapter adresses the final piece of the puzzle, i.e., how to enhance the financial 

preparedness of the NFIP for future payout. To do that, it is essential to have the ability to predict 

future payouts with a reasonable accuracy. Therefore, the fifth chapter presents a prediction model 

that can predict county level insured flood loss to households, measured in terms of annual flood 

insurance payout, in the U.S. based on different factors such as rainfall anomaly, flood damage, 

flood exposure, infrastructure vulnerability, social vulnerability, number of flood insurance 

policies, total insured value, etc. The prediction model has been developed using five years of 

historical flood insurance claims data between 2016 and 2020. For developing the model, three 

regression techniques were adopted (1) Ordinary Least Square Regression, (2) Robust Regression, 

and (3) Generalized Linear Model. The final ensemble model uses the outcomes of these three 

regression models to generate its own predictions. The ensemble model was used to predict the 

annual flood insurance payout of the flood affected counties for the year 2021.  

Overall, this dissertation presents a comprehensive analysis of the Flood Insurance 

Program in the U.S., addressing critical challenges including low uptake rates and significant debt. 

Through causal modeling, risk factor assessment, and predictive modeling, the research provides 

actionable insights to strengthen the NFIP. The findings underscore the importance of tailored 

policies and interventions to increase flood insurance participation, reduce the likelihood of large 

payouts, and ensure the program's long-term financial viability for safeguarding millions of 

Americans. The final chapter of this dissertation concludes the research by summarizing the works 

presented in chapters three, four, and five, its contributions to the body of knowledge, limitations, 

and recommendations for future research. It is important to note that the second, third, and fourth 

chapters of this dissertation had been written in a journal article format. The articles were under 

review in different journals when this dissertation was written.  
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 LITERATURE REVIEW 

This research aims to develop models that can assist policy makers to increase the flood insurance 

take-up rate and decrease the likelihood of large payouts in future. Before the objectives can be 

achieved, it is essential to review the existing knowledge on the topic, which has been 

accomplished through the review of existing literature. The vast scope of the research required 

reviewing literature from multiple domains, which are: (1) Historic Flood Losses, (2) Flood Loss 

Estimation, (3) Flood Risk Reduction, (4) National Flood Insurance Program, and (5) Flood Risk 

Factors. This chapter explains the existing knowledge in these domains. 

2.1 Historic Flood Losses 

Natural hazards cause extensive damage to human life, infrastructure, property, economy, etc. 

Historic data from Munich Re show that the frequency of natural hazards has increased steadily 

since 1980. Since then, these natural hazards have caused a cumulative loss of $5.2 trillion globally 

(Munich Re 2020). The United Nations Office for Disaster Risk Reduction (UNDRR) published a 

report on October 13, 2020, the International Day for Disaster Risk Reduction, where it has 

displayed how extreme weather events like floods, severe storms, etc., have dominated the disaster 

landscape in the 21st century (UNDRR 2020). The data presented in that report is sourced from the 

Emergency Events Database (EM-DAT), managed by the Centre for Research on the 

Epidemiology of Disasters (CRED). EM-DAT records classified disasters as incidents where the 

death toll reaches ten or more, impacts a minimum of 100 individuals, leads to a declaration of 

state of emergency, or triggers a request for international aid. Figure 2.1 shows how the frequency 

of natural hazards have changed since the start of this century. Over the past two decades, there 

has been a significant increase in the occurrence of major floods across the globe, which has more 

than doubled from 1389 to 3254. Similarly, the frequency of storms has also risen from 1457 to 

2034. Floods and storms have emerged as the most commonly observed events during this period 

as shown in Figure 2.1. 
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Figure 2.1 Comparison of Disaster Events by Type: 1980 – 1999 vs. 2000 – 2019 (Source: 

UNDRR 2020) 

Among the natural hazards the losses due to floods are by far the highest on a global scale 

(Colgan et al. 2017, Dubbelboer et al. 2017, CRED-UNISDR 2015) and the U.S. is no exception 

to that (Munich Re 2020). In the U.S., the cumulative loss from floods between 1988 and 2017 has 

been $199 billion (Davenport et al. 2021). Floods can be of different types. The National Oceanic 

and Atmospheric Administration’s (NOAA) National Severe Storm Laboratory has categorized 

floods into five types. They are river flood, coastal flood, storm surge, inland flood, and flash flood. 

River floods take place when water levels exceed the riverbanks' capacity, often due to factors like 

prolonged rainfall, thunderstorms, snowmelt, and more. Coastal floods, on the other hand, result 

from exceptionally high tides exacerbated by heavy rainfall and winds blowing from the ocean 

toward land. Storm surges are characterized by an abnormal coastal water level rise, surpassing 

regular tidal patterns, propelled by the forces of a severe storm's wind, waves, and low atmospheric 

pressure. Inland floods transpire when moderate precipitation persists over days, there is an abrupt 

deluge in a short span, or a river breaches its boundaries due to obstructions like ice or debris, or 

due to dam or levee failures. Lastly, flash floods arise from intense rainfall in a brief timeframe, 

often less than six hours. 

 The EM-DAT database, which provides a comprehensive view of the historic losses 

resulting from different types of natural hazards, was created with the support from the World 

Health Organization (WHO) and Belgium Government. Figure 2.2 shows the historical trend in 

the losses from floods and storms since 1974 in the U.S. as recorded in the EM-DAT database. 
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Since the start of the century, the losses from the natural hazards such as floods and storms (which 

most often result in floods) have increased significantly. 

 
Figure 2.2 Historical Losses from Floods and Storms in the U.S.  

NOAA maintains a record of disasters due to natural hazards in the U.S. where the cost 

exceeded a billion dollars and terms them as billion-dollar events. Figure 2.3 displays the cost and 

the frequency of these billion-dollar events. From the figure, it is apparent that the frequency of 

those events has also increased since the turn of the century. The cost of natural hazards has been 

increasing in the U.S. due to a combination of increase in exposure (more assets are exposed to 

hazards), vulnerability (susceptibility to failure to a natural hazard), and frequency due to climate 

change. Quinn et al. (2019) have analyzed 40 years of historical flood data and have found that 

there is a 1% chance of the losses from rive floods exceeding $78 billion in any given year in the 

U.S. Also, there is a 0.1% chance of the cost exceeding $136 billion. Armal et al. (2020) have 

stated that the direct flood losses in the U.S. have risen from $4 billion annually in 1980 to $17 

billion annually between 2010 and 2018. Jevrejeva et al. (2018) have forecasted that the global 

flood loss can exceed an additional $1.4 trillion annually if the rise of global temperature is not 

maintained at 1.5 ◦C and reaches 2 ◦C. This can potentially cause an increase of the global sea level 

by an additional 11 cm.  
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Figure 2.3 NOAA Billion-dollar Events (Source: NOAA 2022) 

Due to global warming, the precipitation extremes have changed across many regions in 

the U.S. A recent study (Davenport et al. 2021) has utilized historical flood damage data and found 

that between 1988 and 2017, the cumulative impact of the precipitation change has been $73 billion. 

Wing et al. (2022) have estimated a $32.1 billion annual loss from floods based on 2020’s climate 

scenarios.  

2.2 Flood Loss Estimation 

One popular approach for flood loss estimation is to utilize stage-damage function, which 

relates flood damage to various flood parameters (depth, duration, etc.) for different class of 

objects (Krzysztofowicz and Davis 1983, Smith 1994). Depth-damage functions are very popular 

in flood loss estimation research and have existed for more than two decades. Dutta et al. (2003) 

have them in estimating expected flood loss based on flood depth, velocity, and duration. The 

tangible damages were classified into three categories: urban (damage to buildings, structures, 

properties, etc.), rural (damage to agriculture products, farmhouses, etc.), and infrastructure (power, 

transportation, gas supply, etc.). Typically, the direct flood damage estimation to buildings 

comprises two interrelated steps (Pistrika and Jonkman, 2009). The initial step entails analyzing 

the structural damage resulting from flood impacts, which is influenced by flood actions and the 
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building's resistance (Kelman and Spencer 2004). Subsequently, the economic estimation of 

physical damage is conducted. To convert the structural damage into monetary values, it is 

necessary to have knowledge of the pre-disaster market value and replacement cost of the property. 

Arrighi et al. (2018) have measured flood risk at individual building level. They have used 

replacement and recovery costs for quantifying estimated damage to buildings. These costs varied 

for different buildings based on their usage. Rözer et al. (2019) have used historic flood loss data 

between 2005 and 2014 of five German cities to develop a prediction model to predict the degree 

of flood loss to the buildings based on water depth, duration, basement, contamination, and 

household size. Water depth and duration were found as the most important predictors. The FEMA 

has created a geographic information system (GIS) based application named HAZUS, that uses a 

depth-damage function to calculate the flood damage to different building types. The model can 

also estimate the expected tax losses from floods (Scawthorn et al. 2006). 

 Despite the popularity of depth-damage functions, there are certain limitations to them. 

These functions primarily consider water depth as the main element influencing direct damage 

However, additional factors such as flow velocity, duration of flooding, the presence of a flood 

warning system, and the efficiency of emergency response can also impact the level of flood 

damage to buildings (Pistrika and Jonkman 2009, Pistrika 2010, Tsakiris 2014). Unfortunately, 

most flood damage models do not incorporate all these factors. Second, they are site-specific. 

Therefore, the depth-damage function developed for one location may not be applicable for 

another location (Pistrika et al. 2014, Martínez-Gomariz et al. 2020).  

 On macro level, index-based flood vulnerability and resilience assessment has gained 

popularity in recent years. Ezell (2007) has defined vulnerability as the measure of proneness to 

threat scenarios like natural hazards, intentional attacks, etc. Balica et al. (2012) created a flood 

vulnerability index for cities based on three factors: exposure, susceptibility, and resilience (Balica 

et al. 2009). They have adopted a system-based approach in developing the index where they have 

identified three components that explain the flood vulnerability of a city: hydro-geological, socio-

economic, and politico-administrative. For these three components they have identified 19 

indicators: sea level rise, storm surge, number of cyclones, river discharge, foreshore slope, soil 

subsidence, coastline in km, cultural heritage (number of historical buildings in danger), 

population close to coastline, growing coastal population, shelters, percentage of disabled person, 

awareness and preparedness, recovery time, km of drainage, flood hazards map, institutional 
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organizations, uncontrolled planning zones, and flood protection. However, they have not 

considered existing capacities that expedite the recovery process.  

 Karagiorgos et al. (2016) has defined flash flood vulnerability as a summation of physical 

and social vulnerability. For calculating physical vulnerability, an empirical estimate between the 

degree of loss and the intensity of the flash flood has been produced. The degree of loss is 

computed as the ratio of empirically collected loss and value of every property. The fitted 

distribution was used to quantify the physical vulnerability. However, their analysis has not 

considered the other types of losses like loss of business, cost of debris removal, etc. Yang et al. 

(2018) defined a flood vulnerability index built on exposure, sensitivity, adaptive capacity. Their 

list of indicators consists of flood velocity, water depth, flooded area, population sensitivity, 

economic sensitivity, agricultural sensitivity, early warning capabilities, and self-restoring 

capabilities. They have performed multiple flood vulnerability assessment by defining six flood 

vulnerability types and four levels of flooding. 

 Miguez and Veról (2017) have developed a flood risk index based on the flood 

characteristics (depth and duration) and effects (dwelling density, income per capita, and 

inadequate sanitation). The flood risk index is further used in developing the flood resilience index. 

The objective of the risk index is to compare different design options to mitigate urban floods. The 

resilience index basically estimates the efficiency of future projects in terms of the reduction of 

risk index. Chen and Leandro (2019) have proposed a time varying flood resilience index based 

on two stages of flooding: event phase and recovery phase. For the event phase, the indicator is a 

function of water depth, accumulated water depth, duration of flood, and rising rate of flood water. 

For the recovery phase the authors have included the social and economic factors like number of 

children, number of elderly people, and the income of the household along with the four factors of 

the event phase. Leandro et al. (2020) has used the flood resilience index proposed in Chen and 

Leandro (2019) to gauge the impacts of climate change adaptation measures in the households of 

Munich city. They have analyzed the impacts of flood proof gates and flood tanks in households.  

 More recently a mixed methodology of statistical methods, data analytics, and machine 

learning techniques have become more prominent in disaster risk reduction studies. Researchers 

have been using historical data to develop various types of empirical models to derive insights 

from those data. Luu et al. (2019) used a combination of Multiple Linear Regression (MLR) and 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to analyze Vietnam’s 
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regional flood risk based on their national disaster loss database (DANA). MLR was used to 

identify the weights for flood damage attributes. The TOPSIS method was then adopted the 

weights to rank the regions based on their flood risk. Pres (2009) also recommended the use of 

multivariate linear regression for enhanced quantification of weather risks for businesses. 

Varazanashvili et al. (2012) used multiple linear regression to identify the relationship between 

the financial losses, physical exposure, and six types of hazards to develop a national multi-risk 

map for the Republic of Georgia. 

 In addition to MLR, several machine learning techniques have been successfully used for 

vulnerability assessment and risk profiling of infrastructure systems. For instance, Leon and 

Atanasiu (2006) used k-nearest Neighbor graphs to develop a GIS-based clustering model for 

evaluating the seismic vulnerability of regions using a case study from Iasi, a large city in Romania. 

The provided clusters assist the decision makers to identify the buildings that belong to different 

risk or damage classes. Abdulla and Birgisson (2020) used different classification algorithms, e.g., 

k-nearest Neighbor (kNN), Random Forest, Logistic Regression, and Naive Bayes to classify the 

Cumulative Inundation (CI) of different nodes in the road network in Houston, Texas into three 

categories of not vulnerable, moderately, and highly vulnerable. They later translated the 

vulnerability of the road network resulted from removing a node due to fluvial flooding. Their 

results showed that kNN provided the highest prediction accuracy (Abdulla and Birgisson, 2020). 

Mukherjee et al. (2018) used support vector machines and random forests algorithms to 

predict the state-level of power outages and categorize the risk factors using historical power 

outage data in the U.S. Although their framework can facilitate the investment and policy making 

at the federal level, the influence of the current state of the infrastructure system on its performance 

was not thoroughly investigated, primarily due to limited accessibility to detailed micro-level data 

on the power grid infrastructure highlighting the need for alternative methods. 

Ma et al. (2021) have utilized historical individual assistance data in a four nested multi-

level logistic regression model to find the likelihood of a household having homeowners’ insurance 

based on individual income and community income inequalities. Cutter et al. (2014) have found 

that individual assistance is a significant predictor in predicting a community’s post-disaster 

recovery. Wang and Sebastian (2021) have developed an empirical model to quantify flood 

vulnerability expressed as a percentage of property loss for a given water depth based on hazard 

distribution, property exposure, built environment conditions, socio-economic factors of a 
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community using historical flood loss claim data. Helderop and Grubesic (2022) have used 

historical flood insurance payout data to derive different levels of hurricane vulnerability for in the 

state of Florida. Lim and Skidmore (2019) have used a Zero Inflated Negative Binomial (ZINB) 

regression to model the deaths from flood events in a U.S. county based on event specific, area 

specific, demographic, socioeconomic explanatory variables.  

Wing et al. (2020) have used historical NFIP redacted claims data to derive several insights 

on flood depth-damage functions. They have found that the observed flood losses are a non-

monotonic function of flood depth. They follow a beta function bimodal distributions for flood 

depth. Anbarasan et al. (2020) have used a convoluted deep neural network classification model 

to classify areas with chances and no chance of flood occurrence using variables such as water 

flow, water level, rain sensor, humidity etc. Their model found better prediction accuracy than 

other existing algorithms like artificial neural networks and deep neural networks.  

Khosravi et al. (2018) have used decision tree algorithms to predict the flash flood 

susceptibility of Haraz watershed in Iran based on various predictors such as land use, ground 

slope, rainfall etc. In their analysis, alternating decision trees have emerged as the most suitable 

predictor. Costache (2019) has also used different decision tree algorithms to classify flash flood 

potential index in Romania. Although decision trees are primarily used for classification problems, 

they have also been used in regression problems in the past (Xu et al. 2005, Swetapadma and 

Yadav 2016, Pekel 2020, Rakhra et al. 2021, Zhang et al. 2021). Merz et al. (2013) have used 

decision tree regression model to predict the direct building damage from floods in Elbe and 

Danube catchments in Germany based on 28 predictors of five types: hydrologic, emergency 

measures, precaution and experience, building characteristics, and socio-economic status. Their 

analysis showed that tree-based models performed better than the traditional depth-damage models. 

Ragettli et al. (2017) have also used decision trees for detecting flash floods in ungauged mountain 

catchments in China. They have found that decision tree models outperformed the conventional 

models in detecting the probability of 10-year flood events by 20%.  

Spekkers et al. (2014) have collected property insurance claim data between 1998 and 2011 

in Netherlands and have used it in decision tree regression model to predict the average claim size, 

claim frequency after floods. They have found that frequency of insurance claim is influenced by 

rainfall intensity, real estate value, household income, etc. Darmawan et al. (2021) have also used 

decision tree regression to find the impact of total population on flood intensity. Their analysis 
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found that decision tree model performed better than linear regression, polynomial regression, and 

ridge regression. Abedi et al. (2021) have implemented four different tree-based algorithms: 

classification and regression trees, random forest, boosted regression trees, and extreme gradient 

boosting. They have found that advanced tree-based algorithms performed better than the normal 

decision trees. 

Lee et al. (2017) have used random forest and stochastic gradient boosting algorithm to 

develop flood susceptibility maps for Seoul metropolitan city in South Korea. In their analysis, 

random forest model performed better than the boosting algorithm in the validation set. Sadler et 

al. (2018) have used it for predicting the number of coastal flooding per storm event based on 

historical environmental data such as rainfall, tide, groundwater level, wind conditions, etc. In 

terms of prediction performance, the RF model has outperformed Poisson regression model. Liu 

et al. (2020) have utilized Whale optimization algorithm to optimize RF hyperparameters to 

develop a regression model that they have used to predict the flood resilience index of Jiansanjiang 

Administration of Heilongjiang Province of China. Schoppa et al. (2020) have used RF regression 

model for predicting the flood discharge of 95 study basins located in Canada and the U.S. They 

have found that the RF model’s performance is competitive to the traditional hydrological models 

in predicting low and medium magnitude flood discharge. Desai and Ouarda (2021) have utilized 

several linear, nonlinear models in predicting the flood quantile of ungauged sites in Quebec 

Canada based on different predictors such as basin mean slope, annual mean total precipitation, 

annual mean degree days, etc., and found that Canonical Correlation Analysis based RF regression 

model performed better than linear regression and artificial neural networks models. 

Ahmed and Lee (2021) have used Extreme Gradient Boosting (XGBoost) algorithm in 

predicting the flooding susceptibility of urban public transit systems of Toronto in Canada and 

have found that model can predict flooding susceptibility with more than 95% accuracy. Similar 

research was undertaken by Pham et al. (2021). They have utilized several boosting models such 

as adaptive boosting, boosted generalized linear model, XGBoost, deep boost to predict the 

flooding susceptibility in the Talar watershed, Mazandaran province, Iran. In their case the 

XGBoost algorithm produced a prediction accuracy of 87%. Chen et al. (2021) have also used 

XGBoost algorithm along with five other machine learning techniques in predicting the risk map 

of Pearl River Delta in Southern China based on twelve predictors that included rainfall, population 

density, soil type, road data, etc. In their case XGBoost algorithm produced a prediction accuracy 
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of over 96%. Sanders et al. (2022) have developed a XGBoost based Flood Alert System (FAS) 

and found the algorithm’s performance promising in predicting the rising limbs and timings of 

critical stages. 

To summarize, there has been a shift in approach from traditional depth-damage models to 

multivariate prediction models in flood damage estimation in recent times. Wagenaar et al. (2017) 

have found that data-driven regression models reduced the mean absolute error of predicting the 

flood damages to residential buildings and contents by 20% when compared to traditional 

approaches like depth-damage function. Amadio et al. (2019) have also concluded that when 

extensive data are available to characterize flood events, multivariate models provide more reliable 

damage estimates than expert-based damage models for residential buildings. Wagenaar et al. 

(2018) claimed that multivariate prediction models with heterogenous data from multiple locations 

and flood events have high potential for developing improved flood damage estimates. Similar 

conclusion can be found in Kellermann et al. (2020), Schoppa et al. (2020).  

2.3 Flood Risk Reduction 

Flood risk reduction initiatives can be of mitigation type such as floodwalls/seawalls, floodgates, 

levees, evacuation routes, relocating people and property from flood exposed areas, elevated 

structures, property buyouts, etc. They can also be of adaptation type such as early warning systems, 

risk-based land use planning, nature-based solutions, social safety, and risk financing instruments 

(Jongman 2018). For the last two decades, the combination of adaptation and mitigation in flood 

risk planning has been widely discussed (Bizikova et al. 2007, Harvey et al. 2014, Locatelli et al. 

2016, Grafakos et al. 2019). Hinkel et al. (2013) have concluded that adaptation and mitigation are 

complementary to each other. They have also stated mitigation measures can significantly reduce 

flood losses in less wealthy countries where annual flood losses are significant with respect to the 

gross domestic product.  

Transferring the flood risk to private reinsurers or to capital market through reinsurance 

and/or catastrophe bonds can also be considered as risk reduction strategies. FEMA uses these two 

mechanisms to transfer some of the financial risks of the National Flood Insurance Program. 

Reinsurance plays a crucial role in the risk management strategies of insurance companies, acting 

as a form of insurance for insurers themselves. By paying premiums to reinsurers, insurance 

providers like the National Flood Insurance Program (NFIP) can mitigate their financial exposure 
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and transfer the risk of large losses. This risk transfer mechanism provides a safety net, similar to 

the way flood insurance protects a home. Table 2.1 shows the summary of the reinsurance 

placement.  

Table 2.1 Summary of NFIP Reinsurance Placements (Source: FEMA) 

Year Amount of Risk Transferred Number of Reinsurers Annual Premium Paid 

2017 $1.042 billion 25 $150 million 

2018 $1.46 billion 28 $235 million 

2019 $1.32 billion 28 $186 million 

2020 $1.33 billion 27 $205 million 

2021 $1.153 billion 32 $195.8 million 

2022 $1.064 billion 28 $171.9 million 

2023 $.5025 billion 18 $90.2 million 

Reinsurance is commonly utilized by private insurance companies worldwide as a risk 

management tool. Public entities also purchase reinsurance, with several U.S. states operating 

insurance providers that leverage reinsurance, including the Citizens Property Insurance 

Corporation of Florida, the California Earthquake Authority, and the Texas Windstorm Insurance 

Association. Different types of reinsurance exist, and the NFIP utilizes "property catastrophe per 

occurrence excess of loss" reinsurance. Under this arrangement, the reinsurer reimburses the 

insurer for losses that exceed a predetermined deductible. This form of reinsurance serves as a vital 

safeguard against losses stemming from natural disasters and other catastrophic events. To manage 

the NFIP flood risk, FEMA employs two reinsurance strategies: conventional reinsurance with 

one-year term and Insurance-Linked Securities (ILS) reinsurance involving three-year catastrophe 

bonds. The ILS reinsurance expires after three years unless a reinsurance claim depletes the 

coverage. FEMA started the traditional one-year reinsurance from January 2017 and as shown in 

Table 2.1, it paid $1.042 billion of the $9.03 billion of the annual NFIP claims in 2017 after 

hurricane Harvey. FEMA plans to further expand the NFIP Reinsurance Program and actively 

explores additional avenues to enhance protection against future flood losses. 

A catastrophe bond (CAT) is a high-yield debt instrument, whose purpose is to raise money 

for firms in the insurance sector in the event of a natural hazard. A CAT bond permits the bond 
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issuer to receive payments from the bond only if specific conditions, such as a natural hazard 

occurs, and the loss exceeds a predetermined value. In the event that a bond-protected occurrence 

triggers a payout to the insurance company, the responsibility of the issuer to pay interest and 

reimburse the principal is either postponed or entirely waived. FEMA started CAT bonds program 

in 2018. Through reinsurance and CAT bonds, the program plans to achieve cost reduction in risk 

transfer, gain access to greater market capacity, and enhance risk diversification through 

collaboration with various partners. Table 2.2 shows the summary of CAT bonds placed by NFIP.  

Table 2.2 Summary of NFIP CAT Bond Placements (Source: FEMA) 

Year 
Duration  

(3 Years) 

Premium  

Paid 
Coverage Losses 

2018 Aug. 1, 2018 - 
July 31, 2021 

$62 
million 

3.5% of losses within $5 and $10 billion 13% of 
losses within $7.5 and $10 billion 

2019 April 17, 2019 - 
April 16, 2022 

$32 
million 

2.5% of losses within $6 and $8 billion 12.5% of 
losses within $8 and $10 billion 

2020 Feb. 20, 2020 - 
Feb. 19 2023 

$50.28 
million 

3.33% of losses within $6 and $9 billion 30% of 
losses within $9 and $10 billion 

2021 Feb. 23, 2021 – 
Feb. 22, 2024 

$79.44 
million 

12.5% of losses within $6 billion and $7 billion and 
22.5% of losses within $7 billion and $9 billion. 

2022 Feb. 23, 2022 - 
Feb. 22, 2025 

$61.23 
million 

2.5% of losses within $6 billion and $7 billion 5% of 
losses within $7 billion and $9 billion and 32.5% of 

losses within $9 billion and $10 billion. 

2023 Mar. 7, 2023 – 
Mar. 7, 2026 

$50.37 
million 

5% of losses within $7 and $8 billion 11.25% of 
losses within $8 and $10 billion 

 

The scope of the CAT bonds encompasses the 50 states, the District of Columbia, Puerto 

Rico, and the U.S. Virgin Islands. Since the NFIP has limited policies in other territories, flood 

claims in those areas can be adequately addressed without reliance on these placements. Hence, 

the geographic scope excludes American Samoa, Guam, and the Northern Mariana Islands. 

Furthermore, the capital market reinsurance placements specifically cover the risk associated with 

"named storms," which are storms or storm systems classified as tropical cyclones, tropical 

depressions, tropical storms, or hurricanes by the National Weather Service's National Hurricane 
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Center. Consequently, these CAT bonds apply to floods directly or indirectly caused by such 

named storms. It is important to note that major flood events that are not categorized as named 

storms would not trigger the three placements between 2021 to 2023 as shown in Table 2.2. 

However, analyzing catastrophe models and historical data reveals that the majority of the NFIP's 

risk concerning single flood events resulting in losses exceeding $6 billion is primarily associated 

with named storms. Lastly, each of the 2018, 2019, and 2020 CAT bond coverage terminated 

without a covered event occurring before the expiration date.  

Although the reinsurance along with the CAT bonds provides significant coverage of 

possible losses, they might still not be sufficient. For instance, the Caribbean Catastrophe Risk 

Insurance Facility (CCRIF) which is a multi-country risk pool, provides coverage to 22 Caribbean 

and Central American countries (CCRIF 2021a). The CCRIF disbursed $12.8 million in 2019 after 

cyclone Dorian to the government of Bahamas and $30.6 million in 2020 after cyclone Iota and 

Eta to the governments of  Nicaragua (CCRIF 2021b). However, the estimated losses in those 

cases were $3.4 billion for Bahamas (Deopersad et al. 2020) and $743 million for Nicaragua 

(Reuters 2020). In both cases, the payouts only contributed to 0.4% and 4.1% of the estimated 

losses, respectively. Therefore, the governments should not just plan for hedging the flood risk 

through insurance, reinsurance, and CAT bonds but they should also plan for improving flood 

resilience so that the damage can be limited to its minimum. 

Flood risk reduction by single structures such as dams, levees, etc., has been investigated 

extensively by previous researchers. However, few of them have considered a combination of 

multiple strategies in flood risk reduction. van Berchum et al. (2019) have developed multiple lines 

of defense optimization strategies (MODOS) model to plan for multiple lines of flood risk 

reduction while considering the interdependencies between the strategies. The article considers 

four types of strategies. They are flood defenses such as levee, storm surge barrier, nature-based 

solutions such as wetland soyster reefs, damage restricting measures such as flood proofing 

buildings by slab elevations, and evacuation of flood vulnerable zones.  

 Infrastructures are necessary to reduce vulnerability and improve resilience of any 

community, city, or country (ISDR 2005). Infrastructures not only protect against natural hazards, 

but they are also essential for economic development and reducing poverty (UN 2011). In recent 

years, the local governments and public works officials have expressed increasing interest in green 

infrastructures to manage and mitigate flood risk (Carter et al. 2019). O’Donnell et al. (2020) has 
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argued that finding an optimal balance between grey and blue and green infrastructures for 

maximizing flood risk reduction is the key to the planning of successful flood resilient cities. 

Investment in improving flood resilience can have long term benefits. For instance, a report 

published in 2019 by the U.S. National Institute of Building Sciences noted that every dollar 

invested in adopting the latest building codes can save six dollars from riverine flood damage 

yielding a benefit to cost ratio of 6:1 (Multi-Hazard Mitigation Council, 2019). The United Nations 

Environment Program (UNEP) has developed a tool RiVAMP (Chatenoux et al. 2012) to quantify 

the role of ecosystem in disaster risk reduction.  

 However, Kundzewicz et al. (2018) have claimed that structural measures such as dams 

and levees create an illusion of false safety among the populations protected by those dams and 

levees. Thus, various nonstructural measures should also be considered. Non-structural measures 

can be insurance, disaster management, early warning system, etc. Hegger et al. (2014) have 

suggested developing a diversified portfolio of flood risk reduction strategies that combine flood 

risk mitigation, adaptation, and recovery strategies to maximize the benefits from them.  

A recent report from Deloitte (Bachir et al. 2019) has provided five recommendations for 

the insurance industry to navigate through the climate risk landscape. The report recommends that 

insurance companies should incentivize policy holders who invest in mitigating climate risk by 

reducing insurance premiums or assisting them in financing the risk mitigation measures. This can 

help the insurance companies in containing the claims through these adaptation measures. Similar 

suggestions on insurance companies helping organizations in mitigating climate can be found in 

another report by McKinsey and Company (Grimaldi et al. 2020). Hudson et al. (2019) have 

investigated the affordability of risk-based flood insurance and risk reduction measures in Europe. 

They have found that in absence of risk reduction initiatives undertaken at the households’ level, 

the insurance premiums are likely to double between 2015 and 2055. Therefore, successful flood 

insurance mechanisms should incentivize risk reduction by the policyholders. Nofal and van de 

Lindt (2020) have investigated the impact of building level flood risk reduction initiatives such as 

flood barrier systems, water pumps, etc. Lim and Skidmore (2019) have found that local 

governments’ spending on public safety and welfare significantly reduces flood vulnerabilities.  

Property buyout is a popular flood risk reduction choice often adopted for long term flood 

risk reduction. The U.S. federal government has an existing floodplain property buyout program 

(CRS 2022). A floodplain buyout refers to a process in which a government agency acquires 
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private property by purchasing it, relocating, or demolishing any existing structures, and 

preserving the land as open space indefinitely to restore and protect the natural functions of the 

floodplain. The responsibility for maintaining the acquired parcels of land lies with the local 

government, and buyout programs typically do not provide funding for future design, maintenance, 

or utilization of the bought-out land (CRS 2022).  

When it comes to property acquisition and demolition, often facilitated by federal funding, 

a local or state government procures land and structures located in flood-prone areas from willing 

sellers and proceeds to demolish the structures. Alternatively, state, or local governments acquire 

land from willing sellers and provide assistance to property owners in relocating to a different site. 

If the new location falls within a flood zone, the newly constructed structure must adhere to the 

community's building codes, including requirements such as a certain elevation above ground level. 

In both scenarios, the land acquired through the buyout process must be preserved and managed 

as open space.  

North Carolina has established a commendable history of incorporating resilience 

initiatives into its state-level hazard mitigation planning that includes the implementation and 

maintenance of successful buyout programs (North Carolina Department of Public Safety 2018). 

Over the period spanning from the mid-1990s to 2019, it is estimated that North Carolina acquired 

over 5600 homes that were either damaged by hurricanes or situated in flood-prone areas based on 

their location. These endeavors yielded further benefits when the state achieved FEMA's Enhanced 

Hazard Mitigation status in 2014, which granted the state access to an additional 5% in funding 

from the Hazard Mitigation Grant Program (HMGP) after Hurricane Matthew, resulting in an extra 

$25 million allocated towards assisting 210 homeowners in their relocation efforts (North Carolina 

Department of Public Safety 2018). 

In Iowa, which is one of the severe flood prone states in the U.S., the federal buyout 

programs have acquired nearly 3000 properties between 2007 and 2017 (Yildirim and Demir 2021). 

Yildirim and Demir (2021) have developed a web-based environment to analyze property level 

and community level benefit-cost analysis for property buyouts. Johnson et al. (2020) have found 

that the cumulative loss from flood damage will exceed the cost of land acquisition for one-third 

of the unprotected natural land in the U.S. by 2070. They have therefore argued for flood risk 

reduction through land acquisition and conservation of natural land in the floodplains. 
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Although these flood risk reduction strategies have been assessed and analyzed for quite 

some time, lack of funding remains one of the key challenges in risk reduction and resilience 

planning (Thomalla and Larsen 2010, Malalgoda et al. 2014, Ludin and Arbon 2017). 

Infrastructure in the U.S. suffers from continuing underinvestment. The most recent report from 

the American Society of Civil Engineers (ASCE) in 2021 reported that the estimated gap in 

infrastructure investment could reach nearly $2.59 trillion by 2029 and this investment gap can 

potentially cost every American household approximately $3300 every year (ASCE 2021). Under 

this situation various state and local governments introduce innovative funding mechanisms to 

finance new infrastructures. For instance, the Department of Watershed Management in Atlanta, 

Georgia issued Environmental Impact Bond (EIB) for financing green infrastructure projects. The 

EIB was structured in a way to allow the issuer to pay a performance bonus to the investors if the 

benefits from the green infrastructure projects exceeded the expectations (Hallauer et al., 2019). 

Redirecting of post-disaster aids to pre-disaster investments appears to be the largest 

opportunity for financing flood resilience (Colgan et al., 2017). Reguero et al. (2020) have 

explored how the benefit of resilience building projects like reef restoration can be realized in 

terms of reduction of flood insurance premium due to reduction of flood risk as an outcome of the 

resilience building projects. Therefore, they have argued that the derived benefit in terms of 

reduced flood insurance premium should be invested in resilience building. Vaijhala and Rhodes 

(2015) have proposed a concept of resilience bond. Resilience bonds are a special type of CAT 

bonds that links the insurance premium with resilience building projects. A part of the bond 

proceeds is invested in resilience. As an outcome of this investment, the insurance premium is 

reduced for the policy holder. The investors of the resilience bonds also benefit from the reduced 

risk to their principal (Vaijhala and Rhodes 2018). Regarding flood risk reduction and resilience, 

it has been established that an individual organization or stakeholder cannot successfully 

understand and resolve flood risk (APSC 2012). Therefore, the possibility of engaging flood 

related insurance, reinsurance sectors in addition to the CAT bonds in flood resilience planning 

and financing should not be neglected.  

2.4 National Flood Insurance Program 

In U.S., the National Flood Insurance Program (NFIP) started in 1968 under National Flood 

Insurance Act. The reluctance of private insurers to offer flood insurance created the need for the 
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NFIP (Kousky et al. 2020). The NFIP offers flood insurance to individuals, businesses, and renters, 

providing them with vital protection and expediting their recovery process once floodwaters recede. 

Collaborating with communities, the NFIP mandates the implementation and enforcement of 

floodplain management regulations, effectively mitigating the impact of flooding. Flood insurance 

is accessible to residents and businesses within nearly 23000 NFIP-participating communities. 

Presently, in communities participating in the regular program, the highest coverage limit for 

residential buildings with one to four units is set at $250,000, while coverage for personal 

belongings is capped at $100,000. For residential buildings categorized as Other Residential, 

comprising five or more units (excluding condominiums), the maximum coverage limit is 

$500,000 for the structure itself, accompanied by a contents maximum limit of $100,000 (FEMA 

2021). 

Historically, the private flood insurance market in the U.S. has been relatively small. It 

typically offers coverage beyond the NFIP limit or in cases where lenders enforce insurance on 

non-compliant properties (Dixon et al. 2007). While there has been some recent growth in the 

private sector, the number of private policies remains significantly lower than the NFIP policies. 

Moreover, private flood insurance often targets high-value homes with higher premiums, often 

combining flood and homeowners’ coverage and offering better protection (NFIP 2015).  

The NFIP has undergone multiple revisions since its establishment. These revisions were 

aimed to secure its financial stability and enhance its mapping and rate-setting processes (FEMA 

2021). Purchasing flood insurance was voluntary till 1973. Since then, buying flood insurance was 

mandated for properties with mortgage from a federally regulated or backed lender which are in a 

NFIP participating community and within 100-year flood zone by the Flood Disaster Protection 

Act of 1973 (FDPA). The National Flood Insurance Reform Act of 1994 bolstered the NFIP 

through various reforms aimed at enhancing lender compliance, introducing mitigation insurance, 

and establishing a mitigation assistance program. These measures were designed to effectively 

mitigate the costly and devastating consequences of flooding. The Flood Insurance Reform Act of 

2004 reinforced the NFIP by implementing several reforms. These reforms aimed to minimize 

losses for properties that had repetitive flood insurance claims, raise awareness among 

policyholders regarding their individual flood insurance policies, provide comprehensive 

information to policyholders about the claims process, and introduce a minimum criteria for 

training and education for insurance professionals in flood insurance. The Biggert-Waters Flood 
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Insurance Reform Act of 2012, known as Biggert Waters, approved and allocated funds for the 

national mapping program and implemented rate adjustments to ensure the financial stability of 

the program. These adjustments aimed to transition the program from artificially low subsidized 

rates to full actuarial rates that accurately reflect the associated risk. The Consolidated 

Appropriations Act of 2014 included provisions that halted the enforcement of specific sections of 

the Biggert-Waters law, which were related to rate increases. This action was taken to address 

concerns regarding the potential impact of rate increases, while new legislation was being 

developed to address these concerns. The Homeowner Flood Insurance Affordability Act of 2014 

(HFIAA) revoked specific provisions of the previous law, Biggert-Waters, that resulted in the 

reinstatement of grandfathering, the imposition of restrictions on certain rate increases, and the 

adoption of a revised approach to maintaining the financial stability of the fund through the 

implementation of an annual surcharge for all policyholders. 

 The premium for NFIP, i.e., the rating structure has remained largely unchanged since the 

1970s. It was based on conventional insurance practices at the time of its establishment. Properties 

were categorized and assigned rates based on key factors including their location within a flood 

zone as indicated on a Flood Insurance Rate Map (FIRM), the type of occupancy, and the elevation 

in relation to the Base Flood Elevation (BFE). On the Flood Insurance Rate Map, flood hazard 

areas are designated as Special Flood Hazard Areas (SFHAs), which represent the regions that are 

projected to be inundated by a flood event with a 1-percent chance of occurring or exceeding in 

any given year. This 1-percent annual chance flood is commonly known as the base flood or 100-

year flood. SFHAs are categorized and labeled on the map as Zone A, Zone AO, Zone AH, Zones 

A1-A30, Zone AE, Zone A99, Zone AR, Zone AR/AE, Zone AR/AO, Zone AR/A1-A30, Zone 

AR/A, Zone V, Zone VE, and Zones V1-V30. Additionally, the FIRM also indicates moderate 

flood hazard areas, identified as Zone B or Zone X, which lie between the boundaries of the base 

flood and the 500-year flood zones. Areas outside the SFHA that are situated at elevations higher 

than the 0.2-percent-annual-chance flood are classified as Zones C or Zone X, representing 

minimal flood hazard areas. However, this rating system did not consider the specific flood risk of 

individual properties, or the costs associated with rebuilding, and it only accounted for two sources 

of flood risk: river flooding and coastal flooding (CRS 2023).  

 As a federally run program, NFIP premium costs are highly subsidized, especially for 

buildings that were constructed before FEMA adopted Flood Insurance Rate Maps, known as Pre-
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FIRM buildings. These buildings are constructed on or before December 31, 1974 (FEMA 2021). 

Although many Pre-FIRM buildings are exposed to severe flood hazard, their NFIP premiums are 

subsidized due to concerns that those homeowners did not expect high flood insurance cost when 

their homes were constructed (Miller et al. 2019). The subsidized NFIP premiums have raised 

some concerns among the researchers. For instance, Young (2008) has claimed that subsidies are 

not anticipated to be derived from a wide range of taxpayers. Instead, they are projected to be 

generated by requiring participation within the floodplain areas. The research has further claimed 

that the NFIP requirements have been designed to protect the lenders and not the flood victims. 

Despite the subsidized rate, the NFIP penetration rate has been quite low (Kousky 2011). 

According to a study conducted by Chappell et al. (2007) using Gulf Coast Mississippi 

communities’ survey data, it was found that 69 percent of residents did not possess federal flood 

insurance. FEMA also acknowledged the significant lack of coverage among residents residing in 

floodplains. In 2006, Butch Kinerney, a spokesperson for NFIP, stated that flood insurance was 

held by only 44 percent of the homes that were supposed to have it (Boreczky 2006). As explained 

in the previous chapter and demonstrated in Figure 1.2, historically most of the disaster survivors 

have been found uninsured or underinsured (Horn 2019). The penetration rate is even lower in the 

areas that are outside the 100-year flood zone (Kousky 2011).  

 Due to this low penetration rate, researchers have been trying to understand the factors that 

contribute to the demand for flood insurance. For instance, Browne and Hoyt (2000) have used 

historical data between 1983 and 1993 to understand the determinants of flood insurance demand 

such as mitigation spending, federal assistance, premium price, income, federally backed mortgage, 

and recent flood event using fixed effects model. They found a positive relationship between 

income and the extent of flood insurance coverage obtained. Their empirical findings indicate a 

negative correlation between the cost of flood insurance and number of flood insurance policies 

purchased, which is in line with the inverse relation between price and demand for a good or 

service. Furthermore, research offers evidence that the number of flood insurance policies sold in 

a year is positively impacted by flood losses experienced in the previous year. Lastly, they found 

that the availability of disaster relief increased the demand for flood insurance.  

Kriesel and Landry (2004) have estimated the impact of raising the flood insurance 

premium on the coastal areas by random utility maximization for insurance purchase decision. The 

results are similar to that of Browne and Hoyt (2000) as they have also found that price had a 
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negative impact on the demand for flood insurance. On the other hand, higher income households 

were more likely to have flood insurance. They found that chances of having flood insurance 

decreases as the location of a home move further away for coastal flood zones. The findings 

indicate that households situated near artificial shoreline protection have a 12 percent higher 

likelihood of acquiring flood insurance. 

Michel‐Kerjan and Kousky (2010) have analyzed the flood insurance market in Florida, 

which has over 40 percent of the total NFIP policies-in-force in the U.S., for examining the 

attributes of homeowners who make the decision to purchase flood insurance. They found that 80% 

of the flood insurance is for single-family residential properties. Unsurprisingly, about 75% of all 

single-family insurances were in the 100-year flood plain. They reported that the deductible 

choices differed based on the flood zone, as individuals in the highest-risk areas, subject to the 

mandatory purchase requirement, opted for a higher deductible. Lastly, consistent with previous 

findings, they also found evidence of a response to the 2004 floods in Florida, as homeowners 

opted for lower deductibles and higher coverage limits compared to their previous choices. 

 Kousky (2011) investigated the demand for flood insurance utilizing data from all flood 

insurance policies in St. Louis County, Missouri, between 2000 and 2006. The study revealed low 

take-up rates, with initial policy underwriting being a more significant challenge than policy 

retention. Take-up rates increased with larger amounts of land located in both 100-year and 

surprisingly, 500-year floodplains. In regions with levee protection and even along major rivers, 

there was a decline in take-up rates. Homeowners situated beyond the 100-year floodplains, 

exempt from the mandatory purchase requirement, chose policies with lower deductibles and 

broader coverage. The research also revealed a correlation: higher coverage was sought by 

homeowners with greater property value and median income, and closer proximity to major rivers.  

 Michel‐Kerjan et al. (2012) analyzed the NFIP policy tenure using data between 2001 and 

2009. They found that the average duration of new policies within that period ranged from two to 

four years and remained relatively consistent across different levels of flood risk. The length of 

policy tenure was influenced by previous flood experiences, as individuals who have filed small 

flood claims tend to maintain their insurance for a longer period, while those who have faced 

significant flood claims are more prone to letting their insurance lapse sooner. They suggested that 

other pressing needs of daily life such as buying healthier food, replacing bald tires, buying health 
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insurance, etc., might force homeowners to prioritize other expenses over buying and continuing 

flood insurance, especially those who live from paycheck to paycheck.  

 Petrolia et al. (2013) have found that homeowners who anticipate higher flood damage are 

more likely to insure themselves from flood damage. Several studies have found that the demand 

for flood insurance increases after a flood event (Gallagher 2014, Atreya et al. 2015, Ren and 

Wang 2016), but may not be sustained as the bump dies down after 3 years (Kousky 2018). While 

there has been a general consensus on the factors that impact the demand for flood insurance, 

researchers are yet to agree on how the availability of post-disaster federal assistance influences 

the NFIP take-up rate. It has been previously found that the availability of post-disaster 

government assistance reduces the demand for flood insurance, an event popularly known as 

Charity Hazard (Browne and Hoyt 2000).  

Charity hazard can be considered as a specific instance of the moral hazard issue, which 

refers to a change in risk-taking behavior due to an insurance contract, as individuals may take 

more risks when they have insurance. This phenomenon occurs when there is a lack of symmetric 

information between the insurer and the policyholders, preventing the insurer from observing 

changes in risk-behavior and adjusting premiums accordingly. Government-provided financial 

assistance acts as insurance against natural hazards without any premium charged to citizens. 

Consequently, the incentive to buy insurance is diminished. Similar to moral hazard, charity hazard 

arises when the expectation of governmental relief leads to behavioral changes, causing individuals 

to forgo insurance and preventive measures. However, charity hazard does not rely on asymmetric 

information. Furthermore, the implications for insurance companies differ, as charity hazard does 

not impact the insurer's solvency.  

 There is a plethora of research on this topic. Raschky et al. (2013) have analyzed the issue 

of charity hazard for flood insurance in Austria and Germany based on homeowners’ willingness 

to pay (WTP) for flood insurance. Through a Tobit regression model, they found that the expected 

government relief program had a strong crowding out effect on the demand for flood insurance in 

both Austria and Germany when income, flood damage, household size, and other factors are 

controlled. They have also found that the effect is stronger when the availability of this relief is 

certain. However, their research considered the expected government relief as a binary variable 

with possible values, i.e., yes (if available) or no (if not available).  
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 Ren and Wang (2016) have analyzed the occurrence of charity hazard in a Chinese context. 

They found Chinese homeowners’ willingness to buy (WTB) and willingness to pay (WTP) is 

negatively influenced by the relief they received from governments and charity. Thus, they confirm 

the existence of charity hazard in the Chinese flood insurance market. Through laboratory 

experiments and surveys, researchers have investigated whether individuals take disaster aid into 

account when making insurance choices. While these studies provide valuable insights into how 

pre-disaster perceptions can influence purchase decisions, survey responses may not always align 

with real-world behavior. Findings from these studies vary. Typically, when individuals are 

informed about available assistance, it does lead to a decrease in their willingness to pay for 

insurance (Kousky 2018). However, in the absence of such prompts, disaster aid might not factor 

into their insurance decision-making process at all. (Botzen and van den Bergh 2012, Petrolia et 

al. 2013, Raschky et al. 2013).  

 Andor et al. (2020) have also analyzed the occurrence of charity hazard in the German 

flood insurance market. They conducted a differentiated analysis of charity hazard, analyzing the 

impact of government assistance on households in various flood-prone areas, taking into account 

diverse precautionary measures. Their results demonstrate sufficient heterogeneity in the effects 

of governmental relief. Trust in relief from the government was positively correlated with the 

implementation of structural protection initiatives. However, for insurance demand, the 

relationship varies depending on flood exposure. People in flood exposed areas who trust in 

government aid are less likely to purchase flood insurance. Conversely, for those with less flood 

exposure, there is no robust relationship between trust in governmental relief and insurance 

demand. Their findings suggest the existence of charity hazard in flood insurance uptake for 

households in flood-exposed areas. 

 In Tesselaar et al. (2022), a partial equilibrium model was used to examine charity hazard 

and the insurance gap in European Union countries till 2050. The analysis employed the expected 

utility framework with decision functions for insurance buying that accounted for the likelihood, 

uncertainty, and extent of government assistance. By considering country-level insurance systems, 

government assistance types, and flood risk, the research evaluated the development of charity 

hazard under varying conditions. Findings indicated that charity hazard diminished with greater 

uncertainty regarding government compensation and higher flood risk.  
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 Although the evidence has been strongly in favor of the existence of charity hazard in 

Europe and China, the results are contradictory in the U.S. As explained earlier, Browne and Hoyt 

(2000) have found that the post-disaster federal assistance increased the demand for the NFIP. 

They have used historical data between 1983 and 1993 in a fixed effects regression model to 

explain the demand for NFIP in terms of disaster assistance. The results show that the regression 

coefficient is positive and statistically significant at 5% significance level. Therefore, an increase 

in the disaster assistance is expected to increase the demand for flood insurance in the U.S., which 

refutes the existence of charity hazard. However, their study did not consider the lag between 

disaster relief and flood insurance enrollment. The expected effect of disaster relief may not be 

apparent immediately as it might take some time to purchase flood insurance after a disaster. 

Therefore, there is a necessity to consider the time lag between disaster relief and flood insurance 

enrollment. 

 Petrolia et al. (2013) have conducted a household survey in the U.S. Gulf coast states to 

understand the factors that impact the decision of a household to purchase flood insurance. The 

research employed a Probit regression model that expressed the binary decision of purchasing or 

not purchasing flood insurance based on different variables such as risk perception, risk aversion, 

disaster assistance, insurer credibility, past experience with floods, etc. Disaster assistance was 

considered a binary variable that measured the expectations regarding receiving post-disaster 

federal assistance. The regression coefficient for disaster assistance was positive, which indicates 

that positive expectations regarding the availability of post-disaster federal assistance increased 

the prospect of purchasing flood insurance. However, as explained earlier, the outcomes of survey-

based methods can differ from real-world behavior (Kousky 2018).  

 Kousky et al. (2018) have examined charity hazard in the U.S. flood insurance market 

conducting the analysis at the ZIP, i.e., postal code level while considering the time lag between 

federal assistance (IHP) and flood insurance enrollment. They have developed a panel dataset of 

the ZIP codes by utilizing historical data between 2000 and 2011. They found that the charity 

hazard existed for insured amount although it did not exist for take-up rate. However, their analysis 

only considered the availability of federal assistance as a binary variable (IHP assistance was either 

available or not available). But that is only one part of the picture. Not all ZIP codes received an 

equal amount of IHP assistance. In fact, the level of IHP assistance is different in different ZIP 
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codes, which makes the variable continuous. The analysis of the effect of continuous treatment is 

missing in Kousky et al. (2018).  

 Davlasheridze and Miao (2019) have conducted the analysis at the county level using the 

data between 1998 and 2010 to assess the existence of charity hazard in the U.S. Although their 

analysis is focused on analyzing the impact of Public Assistance (PA), which compensates the 

State, Local, Tribal, and Territorial (SLTT) governments to repair their disaster damaged 

infrastructure, on the flood insurance enrollment, they have found that Individual Assistance (IA) 

increased the flood insurance enrollment. They have developed a fixed effects regression model 

that expressed per capita take-up rate, policy coverage, number of policies, and total premiums 

based on different predictors such as rainfall, income, population, and variables that were related 

to the political affiliation of the county. It is worth mentioning that PA does not compensate 

households thus is not directly relevant to flood insurance. Additionally, they have considered all 

the NFIP participating counties regardless of the Presidential declaration of major disaster. Lastly, 

the annual rainfall amount does not provide the actual extent of flood damage, which influences 

the demand for flood insurance (Browne and Hoyt 2000, Petrolia et al. 2013).  

 More recently, Landry et al. (2021) utilized household level survey data to find and 

quantify expectations regarding eligibility for government aid following a disaster declaration. 

This approach served as a direct means to examine the decision of households to forego or reduce 

their flood insurance coverage. Their bivariate probit model results show that charity hazard 

existed in the U.S. flood insurance market. They have estimated that individuals who had 

optimistic expectations of qualifying for disaster assistance for home repair were 32.9% less 

inclined to have a flood insurance policy while controlling for other significant factors such as 

residing in flood zone, etc.  

As explained, previous researchers have found conflicting evidence on the existence of 

charity hazard in the U.S. flood insurance market. Theoretically, charity hazard is expected to exist 

as post-disaster government assistance reduces the incentive for households to insure themselves. 

However, the situation is somehow different in the U.S., where the federal assistance is only made 

available in the event of a Presidentially declared major disaster. The federal government 

compensates the households and businesses for the losses from a natural hazard through Individual 

Assistance (IA) program. The U.S. Housing and Urban Department (HUD) also has two primary 

sources of disaster relief (Kousky and Shabman 2012). The mortgage assistance program provides 
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insurance to homeowners after a major disaster so that they can get qualified for loans to rebuild 

their houses. Evidently, the insurance is not free of cost. The other program managed by HUD is 

Community Development Block Grant (CDBG) which is a non-disaster program but has been used 

as a disaster assistance to fulfill the needs unmet by other federal assistance programs (Kousky 

and Shabman 2012). CDBG funds can be used for housing, economic development, clean up, 

infrastructure recovery, hazard mitigation initiatives after a major disaster. The U.S. Small 

Business Administration (SBA) also provides low interests loans to households and businesses to 

expedite their recovery from a presidentially declared major disasters. However, the Individual 

and Households Program (IHP) within IA is the primary way the US Federal Emergency 

Management Agency (FEMA) supports disaster survivors (Webster 2019).  

 The individuals and households program (IHP) provides direct financial assistance to 

qualified individuals and households who are underinsured or uninsured and have serious needs 

of support as a result of a Presidentially declared emergency or major disaster. Disbursement of 

IHP in case of a national emergency is rare. It is primarily used for major disasters. The U.S. 

president can declare a major disaster for any natural hazard such as flood, severe storm, hurricane, 

earthquake, wildfire, etc., if he or she determines that the damage has exceeded the capability of 

the state and local government to respond effectively. By declaring a major disaster, federal 

resources are made available to the state and local governments to help them overcome the disaster. 

The state or local government does not automatically receive assistance from the federal 

government. Instead, state or local government must formally petition the president to declare a 

major disaster, thereby enabling the allocation of resources.  

It should be noted that IHP is the only federal assistance program that provides direct 

financial assistance to disaster survivors. To be eligible to receive IHP assistance, the applicant 

must furnish that (1) the damage is not uninsured, (2) he or she is a citizen (or qualified alien), and 

(3) the property is the primary residence (Kousky and Shabman 2012). Importantly, if the applicant 

resides in an area designated as a 100-year flood zone and in a community that is not enrolled in 

the NFIP, IHP assistance cannot be utilized for flood-related repairs. This policy is implemented 

to incentivize communities to join the NFIP (Kousky and Shabman 2012).  

It should be noted that the IHP program is purposed to fulfill the basic needs and it does 

not compensate for all losses (Webster 2019). The program provides Housing Assistance that 

covers lodging expense, home repair, temporary housing units, etc., and other needs assistance 
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(ONA) such as childcare assistance, critical needs assistance, transportation assistance, etc. For 

housing assistance, the federal government bears 100% of the cost whereas for the ONA, the cost 

is shared between the federal government and the state or local government. Typically, the federal 

government pays for 75% of the cost and the non-federal share is 25%. Figure 2.4 shows the types 

of housing and ONA provided by FEMA through the IHP program. The maximum assistance for 

housing related needs and ONA provided by FEMA through the IHP program is $35500 (Webster 

2019). It should be noted that the federal government pays for 75% of the ONA while the rest is 

paid by the state governments (Kousky and Shabman 2012).  

 
Figure 2.4 Types of Housing Assistance and Other Needs Assistance (Source: Webster 2019) 

 For homeowners who live in 100-year flood zone and in a community that participates in 

NFIP, having flood insurance is a requirement for receiving the IHP aid. In absence, FEMA may 

purchase the flood insurance through the Other Needs Assistance (ONA) funds for 3 years. At its 

expiration, to qualify for future assistance, the applicant must procure and sustain flood insurance 

coverage (Webster 2019). Kousky (2013) has investigated the disbursement of IA after major 

floods, storms, and tornados in Missouri in 2008. She found that the majority of the aid grants 

were too small, on the order of a few thousand dollars. The average IA grant was approximately 

$2000. Also, more than 50% of the applicants were not granted aid as they were either ineligible 

or the damage was considered insufficient. Among different types of housing assistance, as shown 

in Figure 2.4, most of the IHP was related to home repair, followed by rental assistance, 

replacement assistance, etc. Among the other needs assistance, most applicants received IHP for 
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personal property damage. The paper also highlighted the difficulties in estimating the extent of 

damage accurately after the disaster.  

The inadequacy of the IA aid has also been reflected in Sterett (2015). Wu et al. (2017) 

have found that rate of approval for housing assistance through IHP was less than 50% (44% for 

owners and 32% for renters) after hurricane Harvey in 2017. Hooks and Miller (2006) have 

claimed that IHP encompassed procedural hurdles that are biased against lower income population 

thus making it tougher for them to cope. Grube et al. (2018) have concluded that the procedural 

complexities may have disadvantaged the less educated population based on empirical evidence 

from superstorm Sandy in 2012. Emrich et al. (2020) have also found that IHP assistance is not 

systematically linked to social vulnerabilities. Drakes et al. (2021) have found co-occurrence of 

low level of IHP assistance and high social vulnerability in rural areas and that in Southeastern 

contiguous U.S. Bann (2020) has analyzed the correlation between individual and community level 

demographic variables and the outcomes of the IA program. The research has found that variables 

like homeownership, homeowners’ insurance status, income, households’ composition are 

significant in predicting the total assistance amount.  

 Although the take-up rate for NFIP is quite low, the program is still not profitable. The 

NFIP has been considered problematic almost since its inception. Schilling et al. (1987) found that 

the program had been largely unsuccessful in the coastal areas due to paying more on claims than 

the collected premiums. This problem can be partially attributed to FEMA’s inability to charge 

premiums based on true flood risk. The inability originates from technical as well as bureaucratic 

challenges. As explained earlier, NFIP has been using flood maps for determining the flood 

insurance premiums for households and businesses. The U.S. Department of Homeland Security 

(DHS) reported in 2017 that only 42% of those flood maps can adequately identify flood risk, i.e., 

majority of them were outdated and could not reflect the true flood risk of a property (DHS 2017). 

Again, 1st Street Foundation found that the number of properties that are located within the 100-

year flood zone is 1.7 times of what the FEMA has estimated (1st Street Foundation 2020). Due 

to this discrepancy in the flood maps, it has been claimed on several occasions that the NFIP 

premiums do not reflect the true flood risk of the property that is being insured (Kousky 2018). On 

the other hand, the Homeowner Flood Insurance Affordability Act of 2014 (HFIAA) has restricted 

FEMA’s ability to increase the premium more than 18% annually.  
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Payment of flood insurance claims is one of the key operating expenses of the NFIP. 

Historical records showed that between 1978 and 2017, NFIP collected $60 billion in premiums 

while paid $65 billion as payouts (Grigg 2019). Following the devastation caused by Hurricane 

Katrina in 2005, the NFIP has been burdened with a significant debt of $20.5 billion owed to the 

U.S. Treasury. In 2017, the NFIP program reached its debt limit of $30.4 billion, despite federal 

taxpayers already shouldering $16 billions of NFIP's debt. These debts represent a liability that is 

ultimately borne by federal taxpayers. In 2022, the program was projected to pay more than $280 

million in interest on this debt. However, raising NFIP premiums has posed significant political 

challenges due to the potential adverse effects on housing affordability (Miller et al. 2019). The 

program also pays one-third of its income from the collected premiums to the financial 

intermediaries for underwriting the flood insurance policies although none of the flood risk is 

borne by these intermediaries (Grigg 2019). Repetitive loss properties account for 25-30% of the 

claims although they are only about 1% of the insured properties (Grigg 2019).  

 Researchers have long been recommending reforms in NFIP. Michel-Kerjan and 

Kunreuther (2011), Akabas (2014), McShane and Wie (2019) have recommended risk-based 

premiums, unsubsidized rates, protection of low-income groups, forgiveness of the debt to the U.S. 

Treasury, reduction of exposure by reinsurance and CAT bonds, etc., for reforming the NFIP. 

However, affordability of the NFIP policies remains one of the key challenges for the lower-

income households (Shively 2017). Frazier et al. (2020) claimed that an NFIP reform without any 

considerations for the socioeconomic vulnerability will create barriers for lower-income residents. 

On the other hand, Wagner (2022) has found that the willingness to pay for flood insurance is 

remarkably low in the U.S. The NFIP's ability to pay off its debt is hindered by recurrent and costly 

flooding incidents. Currently, the program relies solely on premiums to cover the interest on 

previous losses, necessitating a shift in this approach to enhance its financial stability. The NFIP 

must implement a robust financial framework that strikes a balance between affordability and 

fiscal soundness to ensure its long-term viability and sustainability. To achieve this goal, FEMA 

has proposed 17 legislative reforms and actions to Congress in May 2022 for consideration during 

the NFIP's reauthorization process. In a letter to the Congressional leaders, FEMA proposed (1) to 

make the NFIP more affordable to low-and-moderate income households to increase the flood 

insurance demand, (2) to build resilience by improving risk communications and providing 

households with tools to manage flood risk, (3) strengthen local floodplain management standards 
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and address extreme repetitive loss properties, and (4) institute a sound financial framework that 

balances affordability and fiscal soundness.  

In 2021, FEMA also brought a new approach named Risk Rating 2.0 that calculates the 

flood insurance premium of a household or business based on its true flood exposure thus making 

it more accurate. All new policies from October 1, 2021, onwards are subject to this new risk rating 

method. FEMA sees this new approach as a transformational leap forward that will set flood 

insurance premium rates fairer and more equitable. FEMA estimated that Risk Rating 2.0 would 

immediately decrease the monthly flood insurance premium for 23% of the policy holders. While 

66% of them will see their monthly flood insurance premium increase by less than $10. The 

remaining 11% will face a monthly increase of flood insurance premium by more than $10 (FEMA 

2022). However, there has been some controversy regarding this Risk Rating 2.0, as it is predicted 

that some states in the U.S. such as Louisiana could see an increase in premium for more than 80% 

of the existing policies (Murphy 2022).  

It has been explained earlier that NFIP’s long term solvency and financial issues cannot be 

simply solved by raising the flood insurance premiums as it might further reduce the demand for 

flood insurance. The reduced demand could increase the extent of uninsured losses from floods in 

future. On the other hand, it is expected that the frequency and severity of natural hazards would 

increase in the long term due to climate change (Smith 2023). Therefore, it is essential that NFIP 

plans for flood risk reduction to keep the program financially viable. Other than providing flood 

insurance to households, NFIP has a long-term objective to reduce federal expenditures on post-

disaster assistance (Horn and Webel 2021). Therefore, NFIP is expected to ensure that future 

payouts are kept within limits. This requires the understanding of the causes that influence the 

annual NFIP payout, i.e., a causal model that explains the flood insurance payouts based on 

different flood risk factors so that appropriate flood risk reduction strategies and/or policies can be 

planned to mitigate the impact of those flood risk factors on the NFIP payouts.  

2.5 Flood Risk Factors 

Risk factors are common in clinical science and defined as the factors that increase the likelihood 

of developing a disease. Similarly, this research has defined flood risk factors as the factors that 

increase the likelihood of flood losses and subsequently the flood risk in a region. Since flood risk 

factors influence the extent of flood loss, it is safe to assume that they influence the extent of flood 
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insurance claims due to flood loss. Identifying the flood risk factors is an essential step for effective 

flood risk management (Koc and Işık 2021). Table 2.3 provides a list of flood risk factors that have 

been previously considered in flood loss and flood risk related literature. Yang et al. (2013) have 

considered 4 categories of flood risk factors that are hazard factors, location characteristics such 

as vegetation coverage, drainage density, etc., property characteristics such as population density, 

agriculture, etc., and societal bearing capabilities in terms of early warning systems, disaster relief 

agencies, etc. Koc and Işık (2021) have clustered flood risk factors into 14 categories that include 

weather conditions, environmental factors, basin and flood characteristics, institutional capacity, 

existing condition of infrastructure, land use pattern, demographic and social factors, health, 

economy, ecology, and accessibility.  

 Pathak et al. (2020) have found 31 factors that influence the flood vulnerability in Nepal. 

Most of the factors are related to the socio-economic characteristics of the households. Balica et 

al. (2012) introduced a flood vulnerability index for cities, considering exposure, susceptibility, 

and resilience factors. They applied a system-based methodology, dissecting flood vulnerability 

into hydro-geological, socio-economic, and politico-administrative components. Within these, 

they identified 19 indicators encompassing aspects like sea level rise, storm surges, cyclone 

frequency, and population density near coastlines. Terti et al. (2015) outlined dynamic flood 

vulnerability components: exposure, sensitivity, and coping capacity. Yang et al. (2018) structured 

their flood vulnerability index around exposure, sensitivity, and adaptive capacity, using indicators 

such as flood velocity, water depth, and early warning capabilities. Karagiorgos et al. (2016) 

delineated vulnerability into physical and social components. For physical vulnerability, they 

established an empirical relationship correlating loss degree with flash flood intensity. This degree 

of loss was determined by the ratio of collected loss to property value, with the resulting 

distribution used to quantify physical vulnerability.  
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Table 2.3 List of Flood Risk Factor 

Flood Risk 
Factors Description Supporting  

Literatures 

Precipitation Average rainfall  Tarhule (2005), Zhang et 
al. (2018) 

Annual 
Frequency 

Annual frequency of floods and related natural 
hazards 

OLOGUNORISA (2004), 
Gayen et al. (2022) 

Historic 
Severity 

Severity of past floods  Botzen et al. (2009), 
Boamah et al. (2015) 

Area Area of the geographic location Ouma and Tateishi 
(2014), Moreira et al. 
(2021) 

Population Population of the geographic location  Rasch (2016), Moreira et 
al. (2021) 

Age of 
Buildings 

Average age of the buildings  Penning-Rowsell et al. 
(2005), Koc and Işık 
(2021) 

Building 
Value 

Dollar value of the buildings  Schröter et al. (2014), 
Wing et al. (2020) 

Agricultural 
Value 

Dollar value of agricultural output  Yang et al. (2013), Yang 
et al. (2018) 

Race Percentage of Hispanic, White, Black, and 
American Indian and Alaska Native population  

Remo et al. (2016), Tate 
et al. (2021) 

Elderly 
Population 

Percentage of Population over 65 years old  Botzen et al. (2009), 
Dandapat and Panda 
(2017) 

Gender Percentage of female population  Pathak et al. (2020), Tate 
et al. (2021) 

Disability Percentage population with disabilities  Campbell et al. (2020), 
Moreira et al. (2021) 

Income Gini-index of income inequality, Below poverty 
level population percentage  

Dandapat and Panda 
(2017), Tate et al. (2021) 

Education Percentage population with a high school degree  Botzen et al. (2009), 
Ahmad et al. (2016), Tate 
et al. (2021) 

Workforce 
Participation 

Percentage population participating in workforce  Kuhlicke et al. (2011), 
Tate et al. (2021) 

Mobile 
Homes 

Number of mobile homes Baker et al. 2014, 
Rumbach et al. 2020 
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Table 2.3 continued 

Flood 
Exposed 
Buildings 

Dollar value of the buildings that are exposed to 
flood and flood related hazards.  

Stephenson and D'ayala 
(2014), FEMA (2021) 

Flood 
Exposed 
Population 

Number of people exposed to flood and flood 
related hazards  

FEMA (2021), Moreira et 
al. (2021) 

Historic Loss 
Ratio for 
Buildings 

Percentage of the buildings that have 
experienced losses in the past. 

FEMA (2021), Vishnu et 
al. (2021) 

Historic Loss 
Ratio for 
Population 

Percentage of the population that have 
experienced losses in the past. 

Schröter et al. (2014), 
FEMA (2021) 

High and 
Significant 
Hazard Dams 

Number of dams that have been classified as 
significant and high hazard by the National 
Inventory of Dams (NID).  

Yerramilli (2013), Day 
(2016) 

Infrastructures 
Vulnerability 

Susceptibility of infrastructure to get damaged 
during floods  

Len et al. (2018), Sanders 
et al. (2020) 

Condition of 
Existing 
Infrastructures 

Existing condition of civil infrastructure  Tu et al. (2011), Deria et 
al. (2020), Porter et al. 
(2021) 

Capacity of 
Civic 
Infrastructures 

Institutional or governance capacity  Cutter et al. (2014), Choi 
et al. (2019) 

Community 
Capital 

Community capital Cutter et al. (2014), Choi 
et al. (2019) 

Flood 
Insurance 

Number of flood insurance policies  Owusu-Ansah et al. 
(2019), Moreira et al. 
(2021) 

Total Insured 
Value 

Dollar value of the total policy coverage of all 
flood insurance policies  

Patankar and Patwardhan 
(2016), Wang and 
Sebastian (2021) 

Environmental 
Protection 

Acres of forest land Bradshaw et al. (2007), 
Kim et al. (2019) 

Availability of 
Internet  

Percentage of households with a broadband 
connection 

Deria et al. (2020), 
Rashetnia and Jahanbani 
(2021) 
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Miguez and Veról (2017) devised a flood risk index centered on flood attributes (depth and 

duration) as well as repercussions (dwelling density, income per capita, and inadequate sanitation). 

This flood risk index was subsequently utilized in constructing a flood resilience index. In a study 

spanning from 1996 to 2015, Lim and Skidmore (2019) scrutinized historical NFIP data and 

identified that lower economic and social foundations, reduced educational attainment, and 

substandard housing quality amplify flood vulnerability. Botzen et al. (2009) conducted a survey 

involving around 1000 homeowners in the Netherlands. They pinpointed various factors, including 

previous encounters with flood hazards, age, and education, that influence homeowners' perceived 

flood risk. 

Among those factors, one that has appeared in most of the research is social vulnerability. 

Social vulnerability includes the socio-economic and demographic factors that increase or reduce 

the impacts of natural hazards on a community (Tierney et al. 2001, Heinz Center 2002). For 

instance, Campbell et al. (2020) have found that vulnerable populations suffer the most damage 

from floods. These people include seniors, people with functional and access needs, people of 

lower economic status, and other minorities. There are a number of research works that have 

analyzed the role of multiple socio-demographic factors on flood vulnerability and have found 

significant impact (Cutter et al. 2003, Zhang and You 2014, Dandapat and Panda 2017, Emrich et 

al. 2020, Drakes et al. 2021, Koc and Işık 2021).  

Researchers have found that the past experience with floods improves the ability to recover 

from future floods (Boamah et al. 2015). However, Fanta et al. (2019) have concluded that 

historical memory is not sufficient to protect human settlements from rare catastrophic floods. The 

age of buildings has been used in the past to model the flood losses to residential buildings 

(Penning-Rowsell et al. 2005, Wing et al. 2020, Koc and Işık 2021). New buildings often follow 

imrpoved standards but can be more expensive to repair if damaged. The value of the buildings is 

another factor that has been used in the past to model flood losses to households (Schröter et al. 

2014, Wing et al. 2020). The agricultural value has also been used in flood loss and flood 

vulnerability assessment (Yang et al. 2013, Yang et al. 2018). It has been found that mobile homes 

are more prone to flood damage (Baker et al. 2014, Rumbach et al. 2020). The existing coping 

capacity of a community is an important predictor for estimating the impact of a natural hazard in 

that community (Scheuer et al. 2011, Yang et al. 2013, Terti et al. 2015). Choi et al. (2019) have 
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proposed that a disaster resilient community needs capacities in all seven layers of infrastructures. 

These seven layers are civil, civic, social, educational, financial, environmental, and cyber.  

2.6 Summary and Point of Departure 

The NFIP at its existing condition is under huge debt to the U.S. treasury (Grigg 2019) and 

the debt is expected to increase in future (CBO 2017) due to increasing frequency and severity of 

natural hazards. Additionally, the NFIP pays a large sum as interest on that debt. There are several 

reasons for the insolvency problem. First, the flood insurance take-up rate in the U.S. is quite low 

(Kousky 2011, Michel‐Kerjan et al. 2012, Kousky et al. 2018). Flood insurance is only required 

for properties that are located in a NFIP participating community and within a 100-year flood zone 

and have a federally backed mortgage. Recent research shows that NFIP designated 100-year flood 

zone grossly underestimates flood risk. In fact, 1st Street Foundation found that the number of 

properties located in 100-year flood zones is 1.7 times higher than what FEMA calculated (1st 

Street Foundation 2020). Second, the NFIP premiums were not risk based until very recently. The 

flood maps that were used by FEMA are outdated and the majority of them do not reflect the true 

flood risk in a location (DHS 2017). FEMA expects to eradicate the premium problem by adopting 

an actuarial approach named “Risk Rating 2.0”, where FEMA claims that the revised premium 

will reflect the true flood risk of a property. However, due to bureaucratic challenges, FEMA is 

unable to raise premiums more than 18% annually. Finally, NFIP as a government sponsored 

program is the insurer of last resort even for the households that are deemed uninsurable by private 

flood insurers (FEMA 2015, Horn and Webel 2021). As result, it cannot cherry pick households 

that it wants to insure. This puts additional pressure on the program due to the presence of 

asymmetrically used information between the insurer and insured (Bradt et al. 2021). Historically, 

25% to 30% of the claims have originated from repetitive loss properties, which are only 1% of all 

the insured properties by the NFIP (Grigg 2019).  

 As highlighted throughout this chapter, previous studies on this topic such as Michel-

Kerjan and Kunreuther (2011), Akabas (2014), Shively (2017), Kousky (2018), Kousky et al. 

(2011, 2018, 2020), McShane and Wie (2019), Frazier et al. (2020), Wagner (2022), etc., have 

provided several recommendations for reforming the NFIP. Recommendations such as risk-based 

premiums, unsubsidized rates, debt cancellation, increased affordability, protection of low-income 

groups, etc., have appeared regularly in the literature. The majority of these recommendations 
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emphasize reforming the NFIP premiums, which is finally being done through Risk Rating 2.0. 

However, as explained earlier, this insolvency problem cannot be simply solved by reforming the 

flood insurance premium as higher premium might further reduce the demand for flood insurance 

and NFIP might be left only with high-risk properties that would further increase the likelihood of 

large payouts. On the other hand, decreasing the premium to increase the take-up rate can cause a 

reduction in revenue, which will put more financial strain on a program that is already under huge 

debt. Therefore, what has been missing in the existing literature is a holistic analysis of the 

problem that produces empirical evidence to help decision makers keep the NFIP running in the 

long-term. To fill the identified gap, this research proposes three major tasks, as presented in Figure 

2.5, to ensure the long-term sustainability of the NFIP. They are (1) increasing demand for flood 

insurance, (2) decreasing future payouts through risk reduction, and (3) enhancing financial 

preparedness by developing the necessary predictive ability.  

 

Figure 2.5. Conceptual Framework for Long-Term Sustainability of the NFIP 

This research proposes that data-driven empirical insights are essential for designing 

effective policies that can ensure the long-term sustainability of the NFIP. Additionally, the 

dissertation hypothesizes that risk reduction is essential in order to keep the future payouts in 
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control. Only through risk reduction, the NFIP can continue to provide flood insurance to millions 

of Americans and at the same time keep the program solvent. Based on the problem statement and 

proposed solutions, the research statement has been formulated as follows – to mitigate flood risk 

through flood insurance, it essential to increase the flood insurance take-up rate and simultaneously 

decrease the likelihood of large payouts. This can only be achieved through flood risk reduction. 

Effective flood risk reduction policies can be more efficiently planned if the decision makers have 

the knowledge of the contributing factors of flood insurance demand and payouts based on data 

driven robust models. 
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 POST-DISASTER FEDERAL ASSISTANCE AND FLOOD 
INSURANCE DEMAND 

Abstract 

This chapter tested the hypothesis that the post-disaster federal assistance program reduces the 

demand for flood insurance in the U.S. To do that, this research has collected data between 2016 

and 2020, and conducted propensity score-based analysis to understand the causality between post-

disaster federal assistance and flood insurance enrollment in the flood affected counties in the U.S. 

In the first part, the treatment variable, i.e., the federal assistance has been considered as binary to 

compare the effect of the availability of federal assistance to that of non-availability of federal 

assistance on flood insurance enrollment in a flood affected county by using propensity score 

matching method. It was found that the availability of the federal payout in a county in a year 

increased the number of flood insurance policies by 5.2% and the total insured value of the policies 

by 4.6% in the following year. Since the level of federal assistance is different in different counties 

that received the assistance, in the next step, the treatment variable was considered continuous to 

estimate the effect of different levels of treatment. Hence, the generalized propensity score method 

was used to develop a dose response function, i.e., a function that depicts the changes in the 

outcome variables, i.e., annual NFIP enrollment based on different levels of treatment, i.e., federal 

assistance. It was found that for each 1000 households in a county that received federal payout, 

the percentage increase in the number of flood insurance policies was 3.41%. On the other hand, 

for each million-dollar federal payout in a county, the total insured value of the flood insurance 

policies increased by 1.96%. Therefore, this research has concluded that contrary to the hypothesis, 

the availability of post-disaster federal payout increased the flood insurance enrollment in the U.S. 

3.1 Introduction 

The National Flood Insurance Program (NFIP), which dominates the U.S. flood insurance market, 

was established by the U.S. federal government in 1968 as a part of the 1968 National Flood 

Insurance Act (Davlasheridze and Miao 2019). Kousky et al. (2018a) reported that private flood 

insurance accounted for only 3.5% to 4.5% of all residential flood insurance policies. The primary 

objective of the NFIP was to offer flood insurance to homeowners and businesses at a subsidized 
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rate to mitigate their loss from floods. Purchasing flood insurance was voluntary till 1973. Since 

then, buying flood insurance was mandated for properties with mortgage from a federally regulated 

or backed lender that are located within 100-year flood zone (Insurance Information Institute 2020).  

The flood insurance take-up rate in the U.S. is low (Kousky et al. 2018). Hence, the U.S. 

federal government, as the insurer of the last resort, compensates the disaster survivors who are 

underinsured and/or uninsured through the Individual Assistance (IA) program. The Individuals 

and Households Program (IHP) within IA is the primary way the U.S. Federal Emergency 

Management Agency (FEMA) supports disaster survivors (Webster 2019). IHP provides direct 

financial assistance to eligible individuals and households who are underinsured or uninsured and 

have serious needs of support as a result of a presidentially declared emergency or a major disaster. 

To be eligible to receive IHP assistance, an applicant must prove that (1) the damage is not insured, 

(2) he or she is a U.S. citizen (or qualified alien), and (3) the property is the primary residence 

(Kousky and Shabman 2012). 

The demand for flood insurance is influenced by several factors such as the premium level, 

household income, damage from recent flood events, population, post-disaster federal support, etc. 

(Browne and Hoyt 2000, Kousky et al. 2018, Landry et al. 2021). There is a general consensus 

about how these factors influence the demand for flood insurance except for post-disaster federal 

support. It has been found that the availability of post-disaster government support often crowds 

out the demand for private flood insurance, an event popularly known as Charity Hazard (Browne 

and Hoyt 2000, Raschky and Weck-Hannemann 2007). In the U.S., the federal regulations require 

that the IHP recipients maintain flood insurance for future assistance. Therefore, IHP should not 

crowd out the demand for flood insurance. However, researchers have found conflicting evidence, 

which have been presented in Table 3.1, on the existence of charity hazard in the U.S. flood 

insurance market.  

This research is a further attempt in answering the question on whether IHP assistance 

influences the NFIP enrollment in the U.S. while using more recent data, a different approach, and 

a different method from the previous studies on this topic. In this new approach, the research 

questions into two parts for deeper insights (1) how the NFIP enrollment differs between the 

counties that received IHP payout and the counties that did not receive the IHP payout despite the 

declaration of major flood related disaster thus making them eligible to receive IHP assistance and 

(2) how different levels of IHP payout influences the NFIP enrollment in a county. To answer 
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these questions, this research has collected data from multiple sources to create an unbalanced 

panel dataset that has been used in a Propensity Score Matching (PSM) method to answer the first 

research question and Generalized Propensity Score (GPS) method to answer the second research 

question. The outcomes of this research will assist the policy makers to decide the future direction 

of these two federal programs as it can greatly influence the cost of flood events to the federal 

government. If the IHP crowds out flood insurance, then in future uninsured flood losses will 

greatly increase as more households will rely on the federal government instead of purchasing 

flood insurance. On the other hand, this can also increase the risk of large payouts to the NFIP 

because only the properties with high flood exposure might be left in the pool of NFIP due to 

presence of asymmetrically used information between insurer and insured (Bradt et al. 2021). Due 

to the increasing frequency of natural hazards, this domino effect of charity hazard could lead to 

insolvency of NFIP. Thus, this scenario increases the challenge of running both NFIP and IHP 

programs. On the other hand, if the IHP reinforces the NFIP enrollment, it will be a win-win for 

the federal government as more households will purchase flood insurance which will subsequently 

reduce the cost of running the IHP program. The last scenario is where the impact of the IHP on 

the NFIP is insignificant and therefore, it neither reinforces nor crowds out the NFIP enrollment. 

In this scenario, both programs can run independently.  

3.2 Research Background 

To illustrate the low flood insurance take-up rate, Munich Re reported that only 5% of all the 

single-family homeowners in the U.S. are insured against flood hazard (Munich Re 2020). They 

have also reported in 2020 that there were 14.6 million properties in the U.S. that were at 

substantial flood risk, i.e., located in a 100-year flood zone (Munich Re 2020). On the other hand, 

NFIP records showed that in 2020, there were approximately 4.03 million flood insurance policy 

holders. This low take-up rate has also been reported in a congressional research report (Horn 

2019). The report records the average NFIP take-up rates across counties in multiple flood events: 

for instance, South Carolina Flood in 2015 (5%), Louisiana Flood in 2016 (17%), Hurricane 

Harvey in Texas (10%), Hurricane Irma in Florida (12%). Other studies have found that the take-

up rate in 100-year flood zone is high, around 50 percent (Kousky and Michel-Kerjan 2012, Dixon 

et al. 2013), while very low outside the 100-year flood zone, even if the area is exposed to flood 

hazard (Kousky 2018).  
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A number of studies have examined the factors that influence the demand for flood 

insurance. For instance, Kousky (2011), Landry and Jahan-Parvar (2011) and Ren and Wang (2016) 

have found that the flood insurance take-up rate is generally higher in the areas of higher flood 

exposure. They have also found that the homeowners’ education level and home value also have 

positive impact on the demand for flood insurance. Petrolia et al. (2013) have found that 

homeowners who anticipate higher flood damage are more likely to insure themselves from flood 

damage. Several studies have found that the flood insurance penetration rate increases following 

a flood event (Gallagher 2014, Atreya et al. 2015, Ren and Wang 2016), but may not be sustained 

as the bump dies down after 3 years (Kousky 2018).  

Another factor that has been found influencing the flood insurance take-up rate is the 

availability of post-disaster funding from the governments. As mentioned earlier, charity hazard is 

defined as the propensity of individuals to not insure themselves against natural hazards because 

they believed that help would be available from friends, family, charities, emergency agencies, 

and government (Browne and Hoyt, 2000). This problem results in households under-insuring or 

not insuring themselves against natural hazards due to the expected government relief. Raschky et 

al. (2013) have analyzed the issue of charity hazard for flood insurance in Austria and Germany 

based on homeowners’ willingness to pay (WTP) for flood insurance. Through a Tobit regression 

model, they found that the expected government relief program had a strong crowding out effect 

on the demand for flood insurance in both Austria and Germany when income, flood damage, 

household size, and other factors are controlled. They have also found that the effect is stronger 

when the availability of this relief is certain. Ren and Wang (2016) also found Chinese 

homeowners’ WTP is negatively influenced by the relief they received from governments and 

charity. 

Table 3.1 summarizes the findings from the relevant literature on charity hazard in flood 

insurance market. It can be noticed that previous researchers have conducted both micro level, i.e., 

household level and macro level, i.e., ZIP or postal code, or county level analysis to understand 

the issue of charity hazard in the U.S. flood insurance market. When the analysis is conducted at 

micro level, the outcomes have predominantly been in favor of the existence of charity hazard. 

Although, Petrolia et al. (2013) have found that the higher expectations of receiving post-disaster 

government assistance increases the likelihood of purchasing flood insurance thus rejecting the 

existence of charity hazard. However, for macro level analysis, the results are conflicting.  
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Table 3.1 Previous Research on Charity Hazard in the Flood Insurance Market 

Literature Country/Region Method Level of 
Analysis 

Existence of 
Charity Hazard 

Raschky et al. (2013) Austria and 
Germany Tobit Model Micro Yes 

Petrolia et al. (2013) U.S. Probit Model Micro No 

Ren and Wang 
(2016) China Logit Model Micro Yes 

Andor et al. (2020) Germany Probit Model Micro Yes 

Landry et al. (2021) U.S. Instrumental 
Variable Micro Yes 

Browne and Hoyt 
(2000) U.S. Fixed Effects 

Model Macro No 

Kousky et al. (2018b) U.S. 
Fixed Effects and 

Instrumental 
Variable Model 

Macro 

Yes, for Insured 
Amount and No, 

for Take-up 
Rate 

Davlasheridze and 
Miao (2019) U.S. Fixed Effects 

Model Macro No 

Tesselaar et al. 
(2022) 

Several 
Countries in the 
European Union 

Partial 
Equilibrium 

Model 
Macro Yes 

Among the macro level analysis, Browne and Hoyt (2000) opposed the idea of charity 

hazard. They found significant positive relation between government disaster relief and demand 

for flood insurance in the U.S. They conducted their analysis at state level using the data between 

1983 and 1993. However, their study did not consider the lag between disaster relief and flood 

insurance enrollment. The expected effect of disaster relief may not be apparent immediately as it 

might take some time to purchase flood insurance after a disaster. Therefore, there is a necessity 

to consider the time lag between disaster relief and flood insurance enrollment. Kousky et al. 

(2018b) have conducted the analysis at the ZIP, i.e., postal code level while considering the time 

lag between IHP assistance and flood insurance enrollment. They have developed a panel dataset 

of the ZIP codes by utilizing historical data between 2000 and 2011. However, their analysis only 
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considered the availability of federal assistance as a binary variable (IHP assistance was either 

available or not available). But that is only one part of the picture. Not all ZIP codes receive an 

equal amount of IHP assistance. In fact, the level of IHP assistance is different in different ZIP 

codes, which makes the variable continuous. The analysis of the effect of continuous treatment is 

missing in Kousky et al. (2018b).  

Davlasheridze and Miao (2019) have conducted the analysis at the county level using the 

data between 1998 and 2010. Although their analysis is focused on analyzing the impact of Public 

Assistance (PA), which compensates the State, Local, Tribal, and Territorial (SLTT) governments 

to repair, restore, reconstruct, or replace their disaster damaged infrastructure, on the flood 

insurance enrollment, they have found that Individual Assistance (IA) increased the flood 

insurance enrollment. It is worth mentioning that PA does not compensate households thus is not 

directly relevant to flood insurance. Additionally, they have considered all the NFIP participating 

counties regardless of the Presidential declaration of major disaster. Contrarily, the research 

presented in this chapter of this dissertation has only considered the NFIP participating counties 

where a flood related major disaster was declared in a year for a more apples to apples comparison. 

Thus, the dataset only contained NFIP participating counties that were eligible to receive IHP 

assistance. Focusing only on these counties, where a Presidential major disaster was declared, also 

neutralized the effect of political alignment of a county on the likelihood of receiving federal 

assistance, which has been pointed out by Garrett and Sobel (2003) and Sylves and Búzás (2007). 

Additionally, this research has used more recent data (between 2016 and 2020) than previous 

research on this topic.  

Table 3.1 also shows the methodology used in existing studies. It can be noticed that the 

previous charity hazard studies in the U.S. at the macro level have been based on the fixed effects 

(FE) model. Despite all the merits of this model, it only measures the Average Treatment Effect 

on the Treated (ATT) (Collischon and Eberl 2020), while the effect of heterogeneity for individual 

homeowners is not analyzed. In addition to ATT, this research requires the estimation of the 

Average Treatment Effect (ATE), i.e., the average difference between the treated and the non-

treated groups, in this case, the flood insurance enrollment between counties that received the IHP 

payout and those that did not receive IHP payout despite the declaration of major disaster. 

Collischon and Eberl (2020) also illustrated that in most cases FE models do not identify true 

causal effects. Therefore, this research has conducted a macro level analysis using Propensity 
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Score Matching and Generalized Propensity Score method. Propensity Score Matching is a simple 

statistical tool that can make more accurate causal inference by balancing non-equivalent groups 

that might originate from a non-randomized design (Rosenbaum and Rubin 1983). Generalized 

Propensity Score, which is a modification of the Propensity Score Matching method, is used to 

analyze the causal effect of a continuous treatment (Hirano and Imbens 2004). Deriving causal 

inference from observational data with Propensity Score-based method is common (Gianicolo et 

al. 2020). With propensity score, it is easier to achieve balance of the confounding variables 

between the control and treatment groups due to the balancing nature of propensity score itself 

(Hirano and Imbens 2004). Hence, propensity score-based models have been chosen for this 

research.  

3.3 Research Data 

This research tests the charity hazard hypothesis, i.e., the availability of post-disaster federal 

payout in the U.S. reduces the intrinsic motivation of households to insure themselves against flood 

losses. To test this hypothesis, we have collected all insurance transaction data for five years 

between 2016 and 2020. The impact of federal payout in a county in the year t is measured against 

the changes in the flood insurance enrollment in that county in the next year, i.e., year t+1 where t 

Î [2016, 2019]. All collected data was aggregated at the county level for each year to create an 

unbalanced panel dataset, where the panel unit is county. There were 1294 NFIP participating 

counties in the dataset where at least one flood related major disaster was declared between 2016 

and 2019. After removing counties without any flood damage, we had 1158 datapoints left with 

positive flood damages where a flood related major disaster has been declared between 2016 and 

2019 thus making them eligible to receive IHP. Despite their eligibility, some counties did not 

receive IHP assistance. The level of assistance was also different among the counties that received 

IHP assistance from the federal government. There were 445 unique counties in 2016, 374 in 2017, 

230 in 2018, and 244 in 2019. It should be noted that this research has only considered counties 

that are located among the 50 U.S. states and the District of Columbia. Figure 3.1 shows the spatial 

distribution of the counties considered in this research. It can be noticed that majority of counties 

are in Texas (156), Missouri (139), Florida (131), North Carolina (120), and Georgia (95).  
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Figure 3.1 Spatial Distribution of the Counties Used in the Analysis 

3.3.1 Treatment Variable 

Treatment variables are the variables whose impacts are measured, i.e., the federal payouts. In this 

research, the federal payouts are quantified in terms of two variables (1) IHP Count, i.e., the 

number of households in a county that received IHP payout in a year t and (2) IHP Amount, i.e., 

the total amount of IHP support received in that county by those households in a year t where t Î 

[2016, 2019]. Among the 1158 datapoints, 194 datapoints had a zero IHP count and therefore zero 

IHP amount. This means that those counties did not receive any IHP support from the federal 

government despite the declaration of major disaster with damages. The other 964 counties 

received IHP support from the federal government. The level of support is different in different 

counties, which implies that the treatment variable cannot be considered as binary only. However, 

when the impact of the IHP support on the flood insurance enrollment is compared between the 

counties that received IHP support to those that did not, the treatment variables must be considered 

as binary. On the other hand, to compare the effect of various levels of IHP support among the 964 

counties, the treatment variables need to be considered as continuous. Table 3.2 displays the 
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descriptive statistics of the two treatment variables including those with zero values. It is important 

to note that both treatment variables are highly right skewed with long tails. The number of 

households that received IHP payout in a county varied between 0 and 182 thousand. On the other 

hand, the amount of IHP payout in a county varied between $0 and $386 million. 

3.3.2 Outcome Variables 

Outcome variables are the variables on which the effect of the treatment, i.e., the availability of 

post-disaster federal support in terms of IHP, is measured. There are two outcome variables in this 

research. They are (1) Percentage NFIP, i.e., percentage change in the number of NFIP policies in 

a county from year t to t+1 and (2) Percentage TIV, i.e., percentage change in the total insured 

value (TIV) of those flood insurance policies in that county from year t to t+1, where t Î [2016, 

2019]. The outcome variables are calculated as in equations 3.1 and 3.2.  

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑐ℎ𝑎𝑛𝑔𝑒	𝑖𝑛	𝑁𝐹𝐼𝑃	𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 

=	
(𝑁𝑜. 𝑜𝑓	𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠	𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡 + 1) − (𝑁𝑜. 𝑜𝑓	𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠	𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡)

𝑁𝑜. 𝑜𝑓	𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠	𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡  

(3.1) 

 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑐ℎ𝑎𝑛𝑔𝑒	𝑖𝑛	𝑇𝐼𝑉 = 	

(𝑇𝐼𝑉	𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡 + 1) − (𝑇𝐼𝑉	𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡)
𝑇𝐼𝑉	𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡  

(3.2) 

Where t Î [2016, 2019]. The impact of the federal payouts is measured by observing the annual 

changes in the outcome variables in the subsequent year. It can be noticed in Table 3.2, which also 

shows the descriptive statistics of the two outcome variables, that the percentage change is not 

always positive. In fact, the 25th percentile of the percentage change in NFIP policy count and TIV 

are both negative. The median percentage change in the NFIP policy count is zero. The average of 

the percentage change in the number of NFIP policies in the dataset is 5% whereas the average of 

the percentage change in TIV is 15%. Both outcome variables are right skewed with long tails. 
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Table 3.2 List of All Variables along with Descriptive Statistics (t Î [2016, 2019]) 

Variable 
Name Code Unit Variable 

Type 
Time 
Scale Mean SD Min 25% Median 75% Max Skewness 

No. of IHP 
payout IHP Count Count Treatment t 956 6939 0 1 22 157 181858 18.1 

Amount of 
IHP payout IHP Amount $ Treatment t $2,621,293 $16,332,800 $0 $3,05

3 $99,865 $605,859 $385,796
,600 16.0 

Percentage 
change in 
the number 
of NFIP 
policies 

Percentage 
NFIP % Outcome t+1 5% 24% -

100% -4% 0% 7% 247% 4.0 

Percentage 
change in 
the Total 
Insured 
Value 

Percentage 
TIV % Outcome t+1 15% 58% -

100% -3% 5% 22% 1072% 11.6 

Population Pop Count Covariate t+1 185914 430843 689 17881 44338 147810 5223719 6.0 

Median 
Household 
Income 

MedIncome $ Covariate t+1 50339 13476 20795 40988 48909 57771 121133 1.1 

Labor force 
participatio
n 

LabForce % Covariate t+1 58% 8% 24% 52% 58% 64% 75% -0.5 

Occupied 
housing 
units 

OccUnits % Covariate t+1 83% 9% 39% 79% 84% 89% 97% -1.4 
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Table 3.2 continued 

Median 
building 
value 

BuildVal $ Covariate t+1 $143,142 $77,786 $0 $94,1
50 

$124,35
0 $165,975 $944,600 3.3 

Population 
with a 
bachelor’s 
degree 

Bachelors % Covariate t+1 14% 6% 1% 10% 13% 18% 33% 0.7 

Flood 
damage Damage $ Covariate t $19,761,32

0 
$200,151,90

0 $12 $62,5
27 

$457,00
8 

$2,694,3
71 

$6,146,8
81,000 25.8 

No. of new 
mortgages Mortgage Count Covariate t+1 1080 3028 0 39 146 780 53593 8.2 

IHP 
Eligibility PerElg % Covariate t 35% 28% 0% 14% 32% 51% 100% 0.7 
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3.3.3 Confounding Variables 

Confounding variables or covariates are the variables that influence both the treatment and 

outcome variables. If these variables are not controlled properly, they may be unequally present 

among the comparison groups. As a result, the estimated effect of the treatment on the outcome 

would be biased. Therefore, it is essential to control these confounding variables. In this research, 

nine confounding variables have been considered. They are (1) Population of the county in the 

year t+1, (2) Median household income of the county in the year t+1, (3) Percentage of population 

in the county that is participating in labor force in the year t+1, (4) Percentage of housing units in 

the county that are occupied in the year t+1, (5) Median building value of the county in the year 

t+1, (6) Percentage of population in the county with a bachelor’s degree in the year t+1, (7) Extent 

of flood damage in the preceding year, i.e., year t, (8) Number of new federally backed mortgages 

in the county in the year t+1, and (9) Percentage eligibility for IHP in the year t. 

The extent of flood damage has been calculated as the sum of the flood insurance claim 

and the flood damage assessed by the FEMA officials for the IHP applicants. The damage 

assessment considers damage to real property components such as floors, walls, access roads and 

bridges, electrical, plumbing, HVAC, etc., and personal property components, including 

appliances, furniture, etc. It should be noted that the assessed damage is higher than the IHP payout 

in most of the cases as damages that are insured are not eligible for reimbursement through the 

IHP. Moreover, there is an upper cap for the maximum amount of IHP support that a household 

can receive. The amount was $35500 for the financial year 2020 (FEMA 2019).  

Federal regulations require flood insurance for homes that are located in the 100-year flood 

zone and have federally backed mortgages. Therefore, the number of new federally backed 

mortgages in a county in a year can influence the new flood insurance purchase in that year in that 

county. Hence, the number of new federally backed mortgages in a county has been considered as 

a confounding variable. The single-family federal mortgage data was collected from the U.S. 

Federal Housing Finance Agency’s website. The data was available separately for two federally 

backed mortgage lenders – Freddie Mac and Fannie Mae. The number of new federally backed 

mortgages in a county in a year has been calculated as the sum of the mortgages through Freddie 

Mac and Fannie Mae.  

The final confounding variable is the percentage eligibility or approval rate for the IHP 

payout in the past. To be eligible to receive IHP assistance, the applicant must demonstrate that (1) 



 
 

76 

the damage is not insured, (2) he or she is a U.S. citizen (or qualified alien), and (3) the damaged 

property is the primary residence (Kousky and Shabman 2012). Notably, if the applicant lives in a 

100-year flood zone and in a community that does not participate in the NFIP, IHP aid is not 

available to the disaster survivors. This step is taken to increase participation in the NFIP by 

communities (Kousky and Shabman 2012). Low approval rate among the IHP applicants has been 

reported by Kousky (2013) and Wu et al. (2017). This lower approval rate can encourage people 

to purchase flood insurance. On the other hand, it might also discourage potential applicants from 

applying for federal support. Hence, it has been considered as a covariate. The percentage 

eligibility has been calculated as the percentage of IHP applicants that were considered eligible to 

receive IHP support. Table 3.2 lists all the confounding variables along with their time scale.  

Next, the correlations between the covariates were tested to avoid multicollinearity. One 

variable in a highly correlated variable pair, i.e., with pairwise correlation coefficient greater than 

0.70, is removed. Figure 3.2 shows the correlation matrix for the covariates. High correlations can 

be noticed between (1) Mortgage – Pop (0.77), (2) MedIncome – LabForce (0.69), (3) MedIncome 

– BuildVal (0.75), (4) MedIncome – Bachelors (0.74), (5) LabForce – Bachelors (0.69), and (6) 

BuildVal – Bachelors (0.72). So, three covariates were removed – Mortgage, MedIncome, and 

Bachelors. After removing these three covariates, the correlation coefficients among the remaining 

six covariates were checked again. None of the correlation coefficient was found higher than 0.57. 

So, the final set of covariates are population, labor force participation, occupied units, median 

building value, flood damage, and percentage eligibility. Table 3.2 also provides the descriptive 

statistics of the covariates.  
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Figure 3.2 Correlation Matrix of the Covariates 

3.4 Research Methods 

There are two parts to the research. In the first part, the treatment variables are considered as binary. 

Therefore, the first part compares the differences in the outcome variables between counties that 

received IHP payout to those that did not receive any IHP payout despite the declaration of flood 

related major disaster by the U.S. federal government. In the next part, the treatment variables are 

considered as continuous. The second part develops a dose-response function that demonstrates 

how different levels of federal support influence the outcome variables. In the second part, the 

effect of IHP count is measured on the percentage change in the number of NFIP policies and the 

effect of the IHP amount is measured on the percentage change in the TIV of the NFIP policies.  
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3.4.1 Part I: Propensity Score Matching for Binary Treatment  

Propensity score matching (PSM), which was proposed by Rosenbaum and Rubin (1983), is a 

quasi-experimental method that uses statistical techniques to create an artificial control group that 

has similar characteristics of the underlying confounding variables to that of the treatment group. 

Since the confounding variables influence both the treatment and the outcome variables, 

controlling them or ensuring their balance, i.e., similar distribution in control and treatment groups 

is essential to realize the actual effect of the treatment. In this research, the treatment group consists 

of the counties that received the treatment, i.e., IHP payout whereas the control group consists of 

the counties that did not receive the IHP payout. The number of counties in the treatment group is 

964 whereas the number of counties in the control group is 194. Since the number of samples in 

the control group is less than that of the treatment group, the 194 counties from the control group 

are matched against the 964 counties in the treatment group to derive artificial treatment group 

that has similar characteristics of the covariates as that of the control group.  

The framework for analyzing the effect of binary treatment is shown in Figure 3.3. The 

propensity score is defined as the likelihood of receiving the treatment Z (Z = 1 for treatment group 

and Z = 0 for control group) conditional on the observed set of covariates X prior to the application 

of the treatment. This conditional probability is generally computed using a Logistic Regression 

model (Logit). It should be noted that the purpose of the Logit model is not to accurately predict 

whether a county would receive IHP payout or not but to derive propensity score that would ensure 

the balance of covariates among the treatment group and artificial control group (Austin 2011b). 

The Logit model computes the likelihood of a county receiving (Z = 1) or not receiving (Z = 0) 

federal payout based on the six confounding variables. Before developing the Logit model, the 

covariates were standardized so that they have zero mean and unit standard deviation. The equation 

for logistic regression is shown in equation 3.3.  

 
𝑃𝑟𝑜𝑏(𝑍 = 1) =

𝑒!!"#!"""#!#"#

1 + 𝑒!!"#!"""#!#"#
 

(3.3) 

Where, Z is the binary treatment variable with two possible values zero and one, X is the vector 

of covariates, and 𝛽$, 𝛽%, and 𝛽& are the regression coefficients. It can be noticed that higher order 

terms (denoted by 𝑋% and 𝑋&) have been used in the logistic regression. Once, the likelihoods are 

derived, the logit of the propensity score of the samples in the control group is matched with that 
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of the treatment group to derive the artificial treatment group. Using logit of the propensity score 

has been recommended by Austin (2011a).  

 
Figure 3.3 Research Framework for Binary Treatment 

For creating the artificial treatment group, this research has used one to one matching. In this 

approach, a sample in the control group is matched to one sample from the treatment group based 

on the propensity score derived from the Logit model. Among matching techniques, Nearest 

Neighbor is commonly used (Geldof et al. 2020). In the nearest neighbor algorithm, k = 50 was 

considered (Geldof et al. 2020). Additionally, as recommended by Austin (2011a), the radius in 

the nearest neighbor algorithm was computed as 0.2 times of the standard deviation of the logit of 

the propensity score. After the matching is complete, the artificial treatment group is expected to 

have similar characteristics of the covariates to that of the control group.  

3.4.2 Part II: Generalized Propensity Score for Continuous Treatment 

Generalized Propensity Score (GPS) has been defined by Hirano and Imbens (2004) as the 

conditional density of the continuous treatment given covariates. The definition is shown in 

equation 3.4.  

 𝑟(𝑧, 𝑥) = 𝑓'|"(𝑧|𝑥) (3.4) 

Where, Z is the treatment variables and X is the vector of measured baseline covariates. The GPS 

is defined as 𝑅	 = 	𝑟(𝑍, 𝑋). Imai and van Dyk (2004) refers to the conditional density function 𝑓'|" 

as the propensity function. The general framework for estimating the dose-response function using 
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the GPS is shown in Figure 3.4. The propensity function is generally estimated by regressing the 

continuous treatment variable on the set of measured baseline covariates using Ordinary Least 

Square (OLS) regression. If the continuous treatment variable Z is normally distributed with mean 

𝛽)𝑥 and variance 𝜎% (where 𝛽 and 𝜎% are estimated using OLS regression), then the conditional 

density function can be estimated by the normal density function, i.e., $
√%+,"

𝑒-
(%&'()*)"

",-" . It is worth 

mentioning that the calculation of GPS assumes that the continuous treatment follows a normal 

distribution.  

 
Figure 3.4 Research Framework for Continuous Treatment 

 The dose response function 𝜇(𝑧)	 is defined as equation 3.5 where, 𝑌.(𝑧)  denotes the 

outcome of the ith sample if it receives a treatment of Z = z. To develop this dose response function, 

the conditional expectation of Yi given Zi and Ri, where Ri is the GPS of the ith sample, is computed. 

To derive this conditional expectation, the outcome variables should be regressed on the treatment 

variable and the derived GPS. This research has used two linear regression models: ordinary least 

square (OLS) and weighted least square (WLS) regression to derive the conditional expectation. 

Imbens (2000) and Zhang et al. (2016) have suggested that weights could be calculated from GPS 

that can be further used in estimating the dose-response function. The weight of a sample is 

calculated as equation 3.6 where 𝑊(𝑍.) is a function that stabilizes the weights. Zhang et al. (2016) 

have suggested that the marginal density function of Z, as shown in equation 3.7, can be a 

reasonable choice for W.  

 𝜇(𝑧) = 𝐸[𝑌.(𝑧)] (3.5) 

 

𝑊𝑒𝑖𝑔ℎ𝑡	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒	𝑖 = 	
𝑊(𝑍.)
𝑟(𝑍.|𝑋.)

 
(3.6) 
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𝑊(𝑍.) =

$

/%+,./0123
"

𝑒
-
(45&6./0123)

"

",./0123
"

. 
(3.7) 

3.5 Results 

As explained earlier, there are two parts of the research. In the first part, the treatment variables 

were considered as binary. Therefore, the Propensity Score Matching method compared the 

changes in the outcome variables between the treatment group and artificial control group. In the 

second part, the Generalized Propensity Score method was used to develop a dose response 

function that demonstrates the expected changes in the outcome variable for different levels of 

treatment.  

3.5.1 Outcome for Binary Treatment 

For the binary treatment, the effect of two treatment variables were estimated together. If no 

household in a county receives IHP payout, the IHP amount for the county will be zero. On the 

other hand, if one or more households receive IHP payout, the IHP amount will be more than zero. 

The reverse is also true. Since the treatment variables are synchronous, they were considered 

together as one for the binary treatment.  

First, a Logit model was developed that expressed the conditional probability of a sample, 

i.e., a county receiving the treatment given the set of baseline covariates. The logistic regression 

model used second and third order terms along with the first order of the covariates as shown in 

equation 3.3. The logistic regression produced a prediction accuracy of 0.82, i.e., for 82% of the 

counties, the model was able to predict whether one county received the IHP payout or not.  

 The derived likelihood was utilized to calculate the propensity score, i.e., the logit of the 

likelihood of receiving IHP payout. This propensity score was further used to derive the artificial 

treatment set using the Nearest Neighbor algorithm as explained earlier. Initially, the control group 

had 194 counties and the treatment group had 964 counties. After the matching was conducted, 

both the control group and artificial treatment group contained 165 counties. Table 3.3 shows the 

difference of the covariates between the control and treatment group before and after matching. 
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The differences are expressed in terms of Standardized Mean Difference (SMD) as shown in 

equation 3.8.  

 𝑑 = 	
𝑥̅)01234153 − 𝑥̅6753078

Q𝑠)01234153
% + 𝑠6753078%

2

 
(3.8) 

Where d is the SMD, 𝑥̅)01234153 and 𝑥̅6753078 are the mean of a covariate in the treatment and 

control group, respectively. 𝑠)01234153%  and 𝑠6753078%  are the sample variance of a covariate in 

treatment and control group, respectively. SMD is considered small if d is between 0.2 and 0.5, 

medium if d is between 0.5 and 0.8, and large if d is greater than 0.8 (Cohen 1988).  

Table 3.3 Standardized Mean Difference Before and After Matching 

Covariate SMD Before Matching SMD After Matching 

Population 0.44 0.08 

Median Household Income 0.45 0.08 

Labor Force Participation 0.32 -0.06 

Percentage Occupied Units 0.32 -0.06 

Median Building Value 0.54 0.14 

Percentage Population with Bachelor’s 0.56 -0.06 

Flood Damage -0.14 -0.52 

Federally backed Mortgage 0.34 -0.09 

Percentage Eligibility -2.37 -2.60 

It can be noticed that for all the covariates except for flood damage and percentage 

eligibility, the absolute values of the SMD after matching are insignificant, i.e., less than 0.2. For 

flood damage, the SMD is -0.52, which can be considered small as the absolute value is very close 

to 0.50. Therefore, the matching process created balance for eight covariates out of nine. The 

nearest neighbor algorithm matched 165 counties from the control group to 165 counties in the 

treatment group based on the propensity score to create an artificial treatment group of 165 

counties. Next, the outcome variables of the control group and the artificial treatment group were 

compared to understand the impact of the treatment variables. Figure 3.5 shows the comparison of 



 
 

83 

the outcome variables. From Figure 3.5, the distribution of the two outcome variables looks similar 

for the control and the artificial treatment groups.  

 
Figure 3.5 Comparison of Outcome Variables 

To dig in deeper, the descriptive statistics of the outcome variables were compared. Table 

3.4 lists some of the descriptive statistics of the two outcome variables for the control and artificial 

treatment groups (mentioned as treatment group in Table 3.4). It can be noticed that the average 

percentage change in the number of NFIP policies in the treatment group is higher than that of the 

control group. The same is true for the other outcome variable, i.e., the percentage change in the 

TIV. The standard deviations of the outcome variables are also higher in the treatment group. The 

results indicate that the counties that have received post-disaster federal support in terms of the 

IHP payout have purchased more flood insurance in the following year. Therefore, the federal 

payout did not crowd out the NFIP.  

Table 3.4 Intergroup Comparison of Outcome Variables 

Variable Group Mean SD Min 25% 50% 75% Max 

NFIP 
Treatment 5.70% 20.40% -28.73% -2.49% 0.94% 6.80% 148.65% 

Control 0.54% 15.04% -28.57% -4.07% -0.95% 2.80% 140.00% 

TIV 
Treatment 13.30% 42.48% -44.08% -3.40% 3.47% 16.88% 374.56% 

Control 8.75% 23.17% -35.00% -1.84% 3.21% 14.39% 149.38% 
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Next, the statistical significance of the intergroup difference was tested. To do that, this 

research has adopted Kruskal-Wallis test, which is the non-parametric version of the Analysis of 

Variance (ANOVA) test. The outcome of the test is expressed as p-value. If the p-value is less than 

0.05, i.e., 5% significance level, the test concludes that the difference is statistically significant. 

The difference is considered insignificant if the p-value is greater than 0.05. The p-value for 

percentage NFIP and percentage TIV were found 0.0008 and 0.99, respectively. The p-values 

indicate that the intergroup difference is significant for the percentage change in NFIP policies 

whereas it is insignificant for percentage change in TIV. This means that after receiving post-

disaster federal assistance, disaster survivors have purchased more flood insurance. Therefore, the 

difference in the increase of flood insurance policies in counties that received federal assistance 

was higher than that of the counties that did not receive any federal assistance. However, the 

increase in percentage of the total insured value is similar between the two groups.  

Another way of measuring the impact of the treatment is through the Average Treatment 

Effect (ATE). ATE represents the average difference in the flood insurance enrollment between 

counties that received the IHP payout and those that did not receive the IHP payout despite the 

declaration of major disaster. To derive the ATE, the average of the differences in the percentage 

change in the NFIP policies and TIV among counties in the control group and their corresponding 

matched counties in the artificial treatment group are computed. Therefore, it is the average of the 

difference in the outcome variables of the 165 counties in the control group and artificial treatment 

group. The ATE for the percentage change in the NFIP policies was found 5.2% and the ATE for 

the percentage change in the TIV of the NFIP policies was found 4.6%. It can be noticed that the 

inter-group differences of the means shown in Table 3.4 are the same as the calculated ATEs. This 

is because the intergroup difference of the means of a variable is mathematically equal to the mean 

of intergroup differences of that variable. So, the availability of the IHP payout in a county in a 

year increased the number of NFIP policies by 5.2% with a p-value of 0.008 and the TIV of the 

policies by 4.6% with a p-value of 0.99 in the following year.  

3.5.2 Outcome of Continuous Treatment 

For continuous treatment the effects of the two treatment variables were estimated separately. The 

effect of the IHP count has been estimated on the percentage change in the number of NFIP policies 

and the effect of the IHP amount has been estimated on the percentage change in TIV. As shown 
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in Figure 3.4, an OLS regression model was developed first to derive the conditional likelihood of 

receiving different levels of treatment based on the set of baseline covariates. Six covariates were 

used for the OLS regression. The regression equation is shown in equation 3.9.  

 𝑧 = 	𝛽9 + 𝛽$𝑋 + 𝜀 (3.9) 

Where z is the continuous treatment variables, 𝛽9 and 𝛽$ are the regression coefficients, and X is 

the vector of the baseline covariates. It should be noted that OLS regression models were only 

developed for the 964 counties that had non-zero IHP count and IHP amount, i.e., positive 

treatment. As explained earlier, the objective of the OLS regression is not to predict the levels of 

treatment but to derive the generalized propensity score that ensures balance of covariates.  

To test the balance of covariates for continuous treatment variable, this research has 

adopted the method used by Imai and van Dyk (2004). In this method, each covariate is regressed 

on the treatment variable using OLS regression. Figure 3.6 shows the standardized normal quantile 

plot of the t-statistics for the coefficients of the IHP Count in each regression. The horizontal lines 

reflect the critical t-values for a 5% significance level. In the first figure, it can be noticed that 3 

points, i.e., 3 covariates are between the horizontal lines. The other six are outside the horizontal 

lines. This meant that six covariates were highly correlated with the first treatment variable, i.e., 

IHP count. The other figure is derived identically except that the derived GPS was controlled in 

each regression. In the second figure, 8 points, i.e., 8 covariates were within the horizontal lines. 

Only one covariate (mortgages) was outside the two horizontal lines. Therefore, after controlling 

for the GPS, balancing was achieved for all the covariates except for the mortgages for the first 

treatment variable, i.e., IHP count.  
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Figure 3.6 Test for Balancing of Covariates for the IHP Count 

A similar process was followed to test the balance of the covariates for the other treatment 

variable, i.e., IHP amount. Figure 3.7 shows the results. The difference in the with and without 

conditioning is apparent. Without conditioning, only one covariate was within the horizontal lines 

while two others were on the line. After the conditioning, all nine covariates fell within the two 

horizontal lines, which indicated the balance of covariates given 𝑧̂.  

 

Figure 3.7 Test for Balancing of Covariates for the IHP Amount 
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For developing the dose response function, the outcome variables were regressed on the 

corresponding treatment variable and the derived GPS from the linear regression model shown in 

equation 3.9. The conditional expectations were calculated using two approaches (1) WLS 

regression using the weights as shown in equation 3.6 and (2) OLS regression without using the 

weights. The second approach gives equal weights to all the counties whereas the first approach 

gives more weightage to counties with lesser propensity of receiving treatment given the baseline 

covariates. Both regressions use an interaction term of the treatment variable and GPS in 

developing the model (Hirano and Imbens 2004). Table 3.5 shows the regression coefficients for 

both OLS and WLS models. It can be noticed that regression coefficients have higher significance 

in WLS models. The models calculated the expected value of the outcome variables for a treatment 

level Z = z for all the counties. It is important to understand that the coefficients of the treatment 

variables, i.e., IHP Count and IHP Amount in Table 3.5 are not equivalent to the slope of the dose-

response function. This is due to the presence of the interaction terms in the regression equations. 

The dose response function 𝜇(𝑧)  is the average of all the responses for all the counties. It 

represents the average impact of the treatment variables on the outcome variables for the samples 

that received the treatment.  

Table 3.5 Regression Coefficients of OLS and WLS for Dose Response Function 

 Percentage NFIP Percentage TIV 

 OLS WLS OLS WLS 

Variable Coeff p-value Coeff p-value Coeff p-value Coeff p-value 

Intercept -0.0041 0.95 -0.0537 0.00 0.16 0.000 -0.02 0.32 

IHP Count 6.54×10-7 0.62 2.42×10-5 0.00 N/A N/A N/A N/A 

IHP Count×GPS  
(Interaction Term) 0.68 0.00 0.13 0.44 N/A N/A N/A N/A 

GPS 824.49 0.45 1750.12 0.00 1.62×10-9 0.49 4.83×10-8 0.00 

IHP Amount N/A N/A N/A N/A 4.64×10-10 0.69 -3.47×10-9 0.00 

IHP 
Amount×GPS  
(Interaction Term) 

N/A N/A N/A N/A 0.29 0.29 1.46 0.00 
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Figures 3.8 and 3.9 show the dose response function for the two outcome variables. It can 

be noticed that the dose response functions are monotonically increasing with the treatment 

variables. This indicates that higher payout leads to higher flood insurance enrollment. It is true 

for both outcome variables. It can be seen that the slopes of the dose response function that were 

derived from the WLS is lower than that of OLS. It has been explained before that the weights 

used in WLS are inversely proportional to the GPS. Therefore, the WLS method gives less weights 

to the counties that have higher likelihood of receiving IHP assistance due to the underlying 

covariates. On the other hand, the OLS gives equal weightage to all the counties. However, both 

approaches resulted in the same trend of the dose response function. Therefore, the outcomes of 

research conclude that that the availability of post-disaster federal payout does not crowd out the 

flood insurance enrollment in the U.S.  

 
Figure 3.8 Dose Response Function for IHP Count  
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Figure 3.9 Dose Response Function for IHP Amount 

To understand the average impact, the dose-response function with OLS and WLS were 

averaged. The average dose response function is shown in the black line in Figure 3.8 and Figure 

3.9. After averaging, it was found that for each 1000 households in a county that received IHP 

payout, the percentage increase in the number of NFIP policies is 3.41%. On the other hand, for 

each million-dollar IHP payout in a county, the total insured value of the NFIP policies increased 

by 1.96%. 

3.6 Discussion 

Based on the data collected and analyzed, this research has concluded that the availability of the 

IHP payout increases flood insurance enrollment, i.e., charity hazard does not exist in the U.S. 

flood insurance market. There are two possible explanations for this research result. First, if a 

homeowner receives IHP payout to recover from flood losses, he or she is expected to maintain 

flood insurance to make him or her eligible for future payout. This is a federal requirement 

(Webster 2019). For homeowners who live in 100-year flood zone and in a community that 

participates in NFIP, having flood insurance is a requirement for receiving the IHP aid. In absence, 

FEMA may purchase the flood insurance through the Other Needs Assistance (ONA) funds for 3 

years. At its expiration, the applicant must purchase and maintain flood insurance to be eligible 

for future assistance (Webster 2019). Therefore, this requirement might force the homeowners to 

purchase flood insurance after receiving the IHP payout.  
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 Second, the insufficiency of the IHP payout may influence the decision of the disaster 

survivors to insure themselves against future flood losses. The IHP is not designed to compensate 

all the losses suffered by the affected population. Its purpose is to help the disaster survivors get 

back on their feet. Therefore, there is an upper cap set on the maximum amount IHP support, which 

was $35500 for the financial year 2020 (FEMA 2019). However, the insufficiency of the IHP 

payout has been highlighted multiple times in the past. For instance, Kousky (2013) has 

investigated the disbursement of IHP after major floods, storms, and tornados in Missouri in 2008. 

She found that the majority of the aid grants were too small, on the order of a few thousand dollars. 

Also, more than 50% of the applicants were not granted aid as they were either ineligible or the 

damage was considered insufficient. The inadequacy of the IHP aid has also been reflected in 

Sterett (2015).  

Figure 3.10 shows the boxplots of the percentage eligibility and the average IHP amount. 

It can be seen that the median percentage approval rate among IHP applicants in a county is around 

37%. The average is 42%. So, on average only 42% of the applicants in a county where a major 

flood related disaster had been declared were deemed eligible by FEMA to receive the IHP grant. 

On the other hand, the median of the average IHP amount per household is only $3584 whereas 

the mean is $4468. This low approval rate along with low average IHP support per household 

might have influenced the decision of the homeowners and businesses to insure themselves against 

future flood events, which could have increased the flood insurance enrollment in those counties 

in the following year.  

 
Figure 3.10 Boxplots of Percentage Eligibility and Average IHP Amount 
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3.7 Conclusion 

This research has tested the hypothesis that the availability of the IHP payout crowds out the 

national flood insurance program in the U.S. This issue is termed as charity hazard. To test the 

hypothesis this research has collected data, created an unbalanced panel dataset, and used it in two 

propensity score-based methods. First, the treatment variable was considered as binary to compare 

the flood insurance enrollment in counties that received IHP payout to those that did not receive 

any IHP payout despite the declaration of major disaster. It was found that the availability of the 

IHP payout in a county in a year increased the number of NFIP policies by 5.2% and the TIV of 

the policies by 4.6% in the following year. Next, the treatment variable was considered as 

continuous to estimate the impact of receiving different levels of IHP payout on the outcome 

variables. It was found that for each 1000 households in a county that received IHP payout, the 

percentage increased in the number of NFIP policies was 3.41%. On the other hand, for each 

million-dollar IHP payout in a county, the total insured value of the NFIP policies was increased 

by 1.96%. Therefore, this research has concluded availability of post-disaster federal payout 

increases the flood insurance enrollment in the U.S, i.e., charity hazard does not exist in the U.S. 

flood insurance market. The existing federal regulations for IHP and the inadequacy of the IHP 

payout are possible causes for this. 
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 FLOOD RISK FACTORS AND FLOOD INSURANCE PAYOUT 

Abstract 

This chapter presents a regression model that quantifies the causal relationship between flood risk 

factors and the flood insurance payout in the U.S. The flood risk factors that have been considered 

in this research are flood exposure, infrastructure vulnerability, social vulnerability, and the 

number of mobile homes. Historical data for the annual flood insurance payout, flood risk factors, 

and other control variables were collected for six years between 2016 and 2021 and used in a 

Mixed Effects Regression model to derive the empirical relationships. The regression model 

expressed the natural logarithm of the annual flood insurance payout in a county based on the flood 

risk factors and control variables. The paper presents the regression coefficients that quantify the 

causal influence. It has been found that all four flood risk factors have statistically significant 

positive influence on the flood insurance payout in a county. However, the extent of the influence 

is different for different flood risk factors. Among them, flood exposure has the highest influence 

on the flood insurance payout, which is followed by the number of mobile homes, infrastructure 

vulnerability, and social vulnerability. Since the federal flood insurance program in the U.S. is 

under huge debt to the U.S. treasury, the government should plan for effective risk reduction that 

can reduce the flood insurance payout in future to keep the program solvent. The outcomes of this 

research are expected to facilitate that decision-making process by providing the empirical 

relationship between flood risk factors and flood insurance payout.  

4.1 Introduction 

The National Flood Insurance Program (NFIP), which is run by the Federal Emergency 

Management Agency (FEMA), started in 1968 under the National Flood Insurance Act. The 

reluctance of private insurers to provide flood insurance created the need for the NFIP (Kousky et 

al. 2020). Purchasing flood insurance was voluntary till 1973. After 1973, buying flood insurance 

was mandated for properties with mortgage from a federally regulated or backed lender that are 

located in a NFIP participating community and within 100-year flood zone by the Flood Disaster 

Protection Act of 1973. While the Federal government offers flood insurance to the households, it 

has been observed in the aftermath of the flood related disasters that most of the sufferers are 
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uninsured or underinsured (Kousky 2011). A congressional research report published in 2019 

(Horn 2019) showed the flood insurance take up rate for some of the recent flood events. The 

report recorded the average NFIP take up rate in the 100-year flood zones for multiple flood events 

such as the South Carolina Flood in 2015 (30%), Louisiana Flood in 2016 (31%), Hurricane 

Harvey in Texas (21%), Hurricane Irma in Florida (31%). Munich Re reported in 2020 that there 

were 14.6 million properties in the U.S. that were at substantial flood risk, i.e., located in 100-year 

flood zone. However, historical records showed that in 2020, there were approximately 4 million 

active NFIP policies in the U.S., which also demonstrates the low take-up rate of flood insurance 

in the U.S. Moreover, it has also been found that NFIP policies are often short lived, i.e., they do 

not get renewed (Michel-Kerjan et al. 2012).  

NFIP had a cumulative debt of $20.5 billion to the U.S. Treasury as of 2020 after the federal 

government forgave $16 billion debt in 2016 (Grigg 2019, Horn 2020). The debt could be partly 

attributed to the low take-up rate. Additionally, it was projected that the annual deficit of collected 

premium and the expected payout would remain $1.4 billion in future (CBO 2017). This problem 

cannot be solved simply by raising the cost of insurance premiums. Previous researchers have 

found that the price elasticity of the demand for flood insurance is inelastic, which means that the 

demand for flood insurance is relatively insensitive to the price (Browne and Hoyt 2000, Landry 

and Jahan-Parvar 2011). However, with a higher cost of flood insurance premium, NFIP might 

end up with the adverse selection problem, where only the households with high flood exposure 

purchase the flood insurance. The adverse selection problem arises due to the presence of 

asymmetrically used information between insurer and insured. Bradt et al. (2021) have found 

substantial evidence that confirms the occurrence of asymmetrically used information for flood 

insurance under NFIP. The adverse selection problem is expected to increase the probability of 

future payouts. On the other hand, NFIP as a government sponsored program is the insurer of last 

resort even for the households that are deemed uninsurable by private flood insurers (FEMA 2015, 

Horn and Webel 2021). Additionally, one of the long-term goals of NFIP is to plan for effective 

flood risk reduction to minimize flood insurance payouts (Horn and Webel 2021). For that, 

understanding the empirical relationship between flood related risk factors, i.e., the factors that 

influence the flood risk and subsequently the flood insurance payout is essential. Moreover, 

climate change is expected to increase the frequency and intensity of natural hazards. This poses 

another challenge on the long-term financial viability of the NFIP without any risk reduction and 
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resilience initiative. All these issues regarding the NFIP create a need for an improved 

understanding of the factors that influence the flood insurance payout. Identifying the relationships 

between those factors and the flood insurance payout and quantifying them can help the policy 

makers designing effective policies such as property buyout, strengthening infrastructure, etc., that 

can reduce the future flood insurance payout, which is the objective of this research.  

To do that, this research has developed an empirical model that quantifies the causal 

relationship between flood insurance payout and different flood related risk factors (henceforth 

referred as flood risk factors) such as flood exposure, infrastructure vulnerability, social 

vulnerability, community resilience, number of mobile homes, etc., by using historical data for six 

years between 2016 and 2021 in a Linear Mixed Effects Regression model. Although it is known 

that the identified flood risk factors influence the flood insurance payout, the proposed model 

quantifies that causal relationship while considering necessary control variables. The outcomes of 

the model demonstrate positive causal relationships between flood insurance payout and four flood 

risk factors, i.e., flood exposure, infrastructure vulnerability, social vulnerability, and number of 

mobile homes. 

4.2 Research Background 

The NFIP has been considered problematic almost since its inception. Schilling et al. (1987) 

found that the program had been largely unsuccessful in the coastal areas due to paying more on 

claims than the collected premiums. NFIP has been using flood maps for determining the flood 

insurance premiums for households and businesses. The U.S. Department of Homeland Security 

(DHS) reported in 2017 that only 42% of those flood maps can adequately identify flood risk, i.e., 

majority of them were outdated and could not reflect the true flood risk of a property (DHS 2017). 

Payment of flood insurance claims is one of the key operating expenses of the NFIP. Historical 

records showed that between 1978 and 2017, NFIP collected $60 billion in premiums while paid 

$65 billion as payouts (Grigg 2019). In 2016, the U.S. congress had to forgive $16 billion debt of 

NFIP to maintain its solvency (Grigg 2019). The program also pays one-third of its income from 

the collected premiums to the financial intermediaries for underwriting the flood insurance policies 

although none of the flood risk is borne by these intermediaries (Grigg 2019). Repetitive loss 

properties account for 25-30% of the claims although they are only about 1% of the insured 

properties (Grigg 2019).  
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 Researchers have long been recommending reforms in NFIP. Michel-Kerjan and 

Kunreuther (2011), Akabas (2014), McShane and Wie (2019) have recommended risk-based 

premiums, unsubsidized rates, protection of low-income groups, forgiveness of the debt to the U.S. 

Treasury, reduction of exposure by reinsurance and CAT bonds, etc., for reforming the NFIP. 

However, affordability of the NFIP policies remains one of the key challenges for the lower-

income households (Shively 2017). Frazier et al. (2020) claimed that an NFIP reform without any 

considerations for the socioeconomic vulnerability will create barriers for lower-income residents. 

On the other hand, Wagner (2022) has discovered that the willingness to pay for flood insurance 

is remarkably low in the U.S.  

As explained earlier, in the past FEMA used flood maps, which did not always reflect the 

true flood risk of a property (DHS 2017). In 2021, FEMA brought a new approach named Risk 

Rating 2.0 that calculates the flood insurance premium of a household or business based on its true 

flood exposure thus making it more accurate. All new policies from October 1, 2021, onwards are 

subject to this new risk rating method. FEMA sees this new approach as a transformational leap 

forward that will set flood insurance premium rates fairer and more equitable. FEMA estimated 

that Risk Rating 2.0 will immediately decrease the monthly flood insurance premium for 23% of 

the policy holders. While 66% of them will see their monthly flood insurance premium increase 

by less than $10. The remaining 11% will face a monthly increase of flood insurance premium by 

more than $10 (FEMA 2022). However, there has been some controversy regarding this Risk 

Rating 2.0, as it is predicted that some states in the U.S. such as Louisiana could see an increase 

in premium for more than 80% of the existing policies (Murphy 2022).  

It has been explained earlier that NFIP’s long term solvency and financial issues cannot be 

simply solved by raising the flood insurance premiums as it might further reduce the demand for 

flood insurance. The reduced demand could increase the extent of uninsured losses from floods in 

future. On the other hand, it is expected that the frequency and severity of natural hazards would 

increase in the long term due to climate change (Smith 2023). Therefore, it is essential that NFIP 

plans for flood risk reduction to keep the program financially viable. Other than providing flood 

insurance to households, NFIP has a long-term objective to reduce federal expenditures on post-

disaster assistance (Horn and Webel 2021). Therefore, NFIP is expected to ensure that future 

payouts are kept within limits. This requires the understanding of the causes that influence the 

annual NFIP payout, i.e., a causal model that explains the flood insurance payouts based on 
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different flood risk factors so that appropriate flood risk reduction strategies and/or policies can be 

planned to mitigate the impact of those flood risk factors on the NFIP payouts.  

In the last two decades a mixed methodology of statistical methods, data analytics, and 

machine learning techniques have become more prominent in the flood risk reduction studies 

(Spekkers et al. 2014, Sadler et al. 2018, Desai and Ouarda 2021). Researchers have been using 

historical data to develop various types of empirical models to derive insights from those data. 

Similarly utilizing historical NFIP payout data to derive empirical relationships between flood risk 

factors and NFIP payout can be one of the possible ways to enhance the understanding of NFIP 

payout. In recent years researchers have been exploring the use of redacted flood insurance claims 

data. For instance, Wing et al. (2020) have used historical NFIP redacted claims data to derive 

several insights on flood depth-damage functions. They have found that the observed flood losses 

are a non-monotonic function of the flood depth. Mobley et al. (2021) have utilized the NFIP 

redacted claims data to develop a continuous flood hazard map for the Texas Gulf Coast region 

using a Random Forest model. Knighton et al. (2020) have also used historical flood insurance 

claims data to develop a model that can predict the number of parcel-level and census tract-level 

flood insurance claims in New York state using Random Forest classification and regression model. 

While their model is useful, it was only developed for the New York state. Ghaedi et al. (2022) 

have also utilized NFIP redacted claims data to predict the extent of flood losses in terms of the 

number of flood insurance claims based on different factors such as flood peak ratio, Giovanni 

flooded fraction, land slope, population per area, number of NFIP policies, etc. While the number 

of flood insurance claims is an important proxy for flood damage, it does not reflect the complete 

picture as their research did not consider other flood risk factors such as infrastructure vulnerability, 

social vulnerability, existing resilience, etc. These factors influence the extent of flood damage 

(Choi et al. 2019, Sanders et al. 2020, Koc and Işık 2021), which influences the NFIP payout.  

Therefore, the reviewed literature suggests that flood risk reduction is essential to keep the 

NFIP financially stable in the long term especially due to the increasing intensity of flood hazard 

caused by climate change. For planning effective flood risk reduction, empirical models that can 

demonstrate causal relationships between flood risk factors and flood insurance payout are 

required. To the best of the authors’ knowledge, that causal model is yet to be developed. The 

objective of this research is to fill that research gap by developing a data-driven causal model that 
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explains flood insurance payout based on different flood risk factors while considering possible 

control variables. 

4.3 Flood Risk Factors 

Risk factors are common in clinical science and defined as the factors that increase the likelihood 

of developing a disease. Similarly, this research has defined flood risk factors as the factors that 

increase the likelihood of flood losses and subsequently the flood risk in a region. Since flood risk 

factors influence the extent of flood loss, it is safe to assume that they influence the extent of flood 

insurance claims due to flood loss. Additionally, this research has narrowed the focus only on the 

factors that can be controlled through human interventions, which has led to five controllable 

factors that influence the extent of flood losses in a region. They are (1) flood exposure, (2) 

infrastructure vulnerability, (3) social vulnerability, (4) community resilience, and (5) the number 

of mobile homes.  

4.3.1 Flood Exposure 

The flood exposure measures the representative value of buildings exposed to river and coastal 

floods (Zuzak et al. 2021). It is evident that higher flood exposure leads to increased likelihood of 

higher flood losses. Therefore, it has been considered as a flood risk factor. It is worth mentioning 

that this research did not calculate the flood exposure. The data was collected from FEMA’s 

National Risk Index, which records the flood exposure for all the counties (Zuzak et al. 2021). The 

exposure is initially computed at the census block level and then aggregated to the county level. 

To estimate the exposure to river and coastal flood hazards, the hazard occurrence and susceptible 

zone polygons (as suggested by FEMA) are overlapped with appropriate administrative areas 

(county for this research). The resulting intersecting shape measures the area of exposure. The 

number of buildings within that area is the measure of flooding exposed buildings. The detailed 

procedure for the exposure calculation can be found in FEMA’s National Risk Index’s Technical 

Documentation (Zuzak et al. 2021). 

 For coastal flood exposure calculations, the susceptible zone polygons included 100-year 

flood zones, 500-year flood zone, and the National Oceanic and Atmospheric Administration’s 

(NOAA) minor, moderate, and major High Tide Flooding (HTF) zones (Zuzak et al. 2021). HTF 
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occurs when sea level rise combined with other local factors push the water level above the high 

tide mark. The HTF falls under three categories: minor (when the water level touches 1.8 feet 

above the high tide), moderate (when the water level reaches 2.8 feet above the high tide), and 

major (when the water level touches 3.9 feet above the high tide). For river flood exposure 

calculations, the susceptible zone polygons included the 100-year flood zones (Zuzak et al. 2021). 

The combined flood exposure was calculated as the sum of river flood exposure and coastal flood 

exposure. It should be noted that the data on flood exposure is only available for one year. The 

values are in 2022-dollars. Therefore, the exposure has been assumed constants for all six years 

between 2016 and 2021 due to lack of better data. Figure 4.1 shows the log transformed flood 

exposure of different counties. The transformation is done to make the differences apparent. It can 

be noticed that the counties with the highest flood exposure are primarily located in the coastal 

regions. These counties are exposed to coastal floods, which have higher susceptible zone 

polygons, thus increasing the exposure value.  

 

Figure 4.1 Flood Exposure of Counties (Log Transformed) 

4.3.2 Infrastructure Vulnerability 

Infrastructure works as the first line of protection against natural hazards such as floods, severe 

storms, hurricanes, etc. As a result, they often fail due to suffering from physical damage during 
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these natural hazards. Ezell (2007) defined vulnerability as the susceptibility to failure under threat 

scenarios such as natural hazards, intentional attacks, etc. Evidently, vulnerable infrastructure 

leads to severe flood losses and subsequently higher flood insurance claims from the households. 

Therefore, it is essential to consider infrastructure vulnerability as a predictor in the causal model.  

 The U.S. federal government compensates the disaster affected state, local, tribal, and 

territorial governments to repair, restore, reconstruct, or replace their disaster damaged 

infrastructure through the FEMA managed Public Assistance (PA) program. Through this program, 

state and local governments repair disaster damaged roads and bridges, utilities, water control 

facilities, and other types of infrastructure. Bhattacharyya et al. (2023) have recently used that 

historical PA data in understanding the vulnerability of roads and bridges in the U.S. They have 

found that the poorly maintained roads and bridges have failed more often and thus required more 

federal assistance for repairing. Based on that research outcome, this research has considered the 

per capita PA amount received by a county in a year as a proxy variable representing the 

vulnerability of infrastructure in that county. Figure 4.2 shows the log transformed per capita total 

PA payout for the counties between 2016 and 2021. It can be noticed that the counties on the 

eastern half of the U.S. have received more PA assistance for flood related disasters. It is because 

these counties are more exposed to flood hazards than those in the western half. However, counties 

in California, Oregon, and Washington have received PA funding between 2016 and 2021 as they 

are exposed to coastal flood hazard.  
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Figure 4.2 Per Capita Public Assistance Payout in Counties (Log Transformed) 

4.3.3 Social Vulnerability 

Social vulnerability includes the socio-economic and demographic factors that increase or reduce 

the impacts of natural hazards on a community (Tierney et al. 2001, Heinz Center 2002). Previous 

researchers have found that the impact of disasters is more prevalent in the socially vulnerable 

population. For instance, Campbell et al. (2020) have found that vulnerable populations suffer the 

most damage from floods. These include seniors, people with functional and access needs, people 

of lower economic status, and other minorities. Several research works have analyzed the role of 

multiple socio-demographic factors on flood vulnerability and have found significant impact 

(Cutter et al. 2003, Zhang and You 2014, Dandapat and Panda 2017, Emrich et al. 2020, Drakes 

et al. 2021, Koc and Işık 2021).  

This research utilizes the Social Vulnerability Index (SVI) proposed by the U.S. 

government’s Centers for Disease Control and Prevention (CDC). The index is developed by 

utilizing 16 socioeconomic variables such as poverty level, unemployment, health insurance, race, 

ethnicity, disability, elderly population, etc. The SVI data ranges between zero and one, where 

zero and one are the lowest and highest level of social vulnerability, respectively. The SVI data 

for each county, which was collected from CDC’s website, was only available for the years 2016, 
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2018, and 2020. Therefore, the SVI for 2017 and 2019 were calculated by interpolating, i.e., by 

taking average in this case. Additionally, when this research was conducted, the SVI for 2021 was 

not published. So, the SVI for 2021 was assumed to be equal to that of 2020. Figure 4.3 shows the 

spatial distribution of the average annual SVI of the counties.  

 

Figure 4.3 Average Annual SVI of Counties 

 It can be noticed that the southern states are more socially vulnerable than the northern 

states. As a result of the higher social vulnerability, the southern states are more at risk of flood 

losses. At the same time, these counties are also exposed to coastal floods, which increases the 

likelihood of high flood loss compared to the northern states.  

4.3.4 Community Resilience 

The National Institute of Standards and Technology (NIST) has defined Community Resilience as 

the ability of a community to prepare for anticipated natural hazards, adjust to changing conditions, 

and withstand and recover speedily after the disaster (NIST 2020). The existing coping capacity 

of a community is an important predictor for estimating the impact of a natural hazard in that 

community (Scheuer et al. 2011, Yang et al. 2013, Terti et al. 2015). Choi et al. (2019) have 

proposed that a disaster resilient community needs capacities in its all seven layers of critical 
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infrastructures. These seven layers are civil, civic, social, educational, financial, environmental, 

and cyber. However, this research has utilized the Baseline Resilience Indicator for Communities 

(BRIC) developed by University of South Carolina’s Hazards and Vulnerability Research Institute 

because of the availability of relevant data (Cutter et al. 2014). The indicator is developed based 

on 49 factors representing six types of resilience: social, economic, community capital, 

institutional capital, housing or infrastructure, and environmental (Cutter et al. 2014). The 

community resilience data was also collected from FEMA’s National Risk Index database for the 

year 2020. The community resilience has been assumed constant for other years due to lack of 

available data. The community resilience values ranged between zero and one hundred. Zero 

represents the lowest level of community resilience whereas one hundred represents the highest 

level of community resilience. Figure 4.4 shows the spatial distribution of the community 

resilience. It can be noticed that the spatial distribution of social vulnerability and community 

resilience are inversely correlated. The Midwestern and Northeastern states that have low social 

vulnerability have higher community resilience. On the other hand, the Southern states that have 

higher social vulnerability have lower community resilience.  

 

Figure 4.4 Community Resilience of Counties 
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Despite the popularity, index-based approach for quantifying community resilience has 

recently received some criticisms. For instance, Yabe et al. (2022) have listed some of the major 

limitations such as failing to account for complex intercedences between coupled socio-technical 

systems and dynamic process of resilience, difficulty to validate and test, etc., of using static index 

for quantifying community resilience. Yabe et al. (2021) have proposed using more dynamic 

approach like utilizing human mobility data to model the recovery of a disaster affected 

community. However, this type of approach for modeling community resilience is event specific 

and does not provide a measure of the existing capacities in a community in absence of a disaster. 

Moreover, this research required having an annual county level measure of community resilience 

for 1813 counties, which is not feasible with the approach explained in Yabe et al. (2021) and 

Yabe et al. (2022). Hence, BRIC has been chosen as a measure of the existing coping capacities 

in a county to overcome disasters. Future research could be designed to account for county-based 

approach of resilience that could integrate micro-level dynamic measures of community resilience. 

4.3.5 Mobile Homes 

The U.S. Department of Housing and Urban Development (HUD) defines mobile homes as 

structures that are assembled in a factory and shipped in one or more sections on a permanent 

chassis. These homes may or may not have permanent foundations. As a result, they are vulnerable 

to wind and water forces despite the recent advancements in making them resilient to strong wind 

and water forces (Baker et al. 2014, Rumbach et al. 2020). The U.S. Census Bureau’s records show 

that approximately one third of the existing mobile homes are located in Florida, Texas, North 

Carolina, and California, i.e., the states that are exposed to coastal floods. Moreover, mobile home 

communities are often dominated by low- and moderate-income households, who are less likely 

to be prepared to face disasters caused by natural hazards (MacTavish and Salamon 2001, Aman 

and Yarnal 2010, Baker et al. 2011). Additionally, Shen (2005) analyzed the locations of mobile 

homes in rural North Carolina and found that they are twice as likely to be located in 100-year 

flood zones than other forms of housing. Due to all these factors, the number of mobile homes in 

a county has been considered a flood risk factor in this research. 
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4.4 Research Data and Methods 

As explained earlier, the objective of this research was to develop a causal model that can explain 

the flood insurance payout in a county based on the identified flood risk factors while considering 

the necessary control variables. Towards that objective, data from multiple publicly available 

sources such as FEMA, U.S. Census Bureau, the National Oceanic and Atmospheric 

Administration (NOAA), the Center for Disease Control and Protection (CDC), etc., were 

collected for six years between 2016 and 2021. All the collected data were aggregated at the county 

level to develop an unbalanced panel dataset with county as the panel unit. Table 4.1 lists all the 

variables used in this research.  

4.4.1 Response Variable 

The response variable for the causal model is the annual NFIP payout in a county between 2016 

and 2021. It should be noted that this research has only considered the NFIP participating counties 

where the number of active NFIP policies and the annual NFIP claims are at least one. This filtering 

resulted in an unbalanced panel dataset since all the counties did not have positive flood insurance 

claims each year. As a result, the final unbalanced panel dataset had 4327 datapoints representing 

counties from 48 states that excluded Alaska, Hawaii, and Washington D.C. There were 1813 

unique counties in the final dataset, where the response variable ranged between $8 and $4.43 

billion. Additionally, the response variable, i.e., the annual NFIP payout was extremely right 

skewed with the skewness coefficient of approximately 55, which is very high for linear regression 

purposes. Therefore, the response variable was transformed to its natural logarithm. After the 

transformation, the response variable became more symmetric than before and the skewness 

coefficient was down to 0.56, which is approximately 99% reduction. Therefore, this log 

transformed annual NFIP payout has been used as the response variable for developing the causal 

model. Table 4.1 presents other descriptive statistics of the response variable. 
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Table 4.1 List of Variables with Descriptive Statistics 

Variable 
Variable  

Code 
Unit Data  Supporting 

Literature Mean SD Min 25% 50% 75% Max 

Annual NFIP 
Payout NFIP $ 2016-

21 - 3,729,73
8 

71,774,0
40 8 25,015 85,881 357,422 4,428,74

1,000 

Flood 
Exposure ExposureB $ 2022 

Stephenson and 
D'ayala (2014), 
FEMA (2021) 

5,774,68
2,000 

21,675,1
60,000 - 199,038,

400 
536,000,

000 
2,513,55

8,000 
313,000,
000,000 

Infrastructure 
Vulnerability Infra $ 2016-

21 

Len et al. (2018), 
Sanders et al. 

(2020) 
27 184 - - - 3 5,745 

Social 
Vulnerability SOVI NA 

2016, 
2018, 
and 

2020 

Cutter et al. 
2003; Zhang and 

You 2014 
0.55 0.27 0.00 0.32 0.57 0.79 1.00 

Community 
Resilience RESL NA 2020 

Cutter et al. 
(2014), Choi et 

al. (2019) 
55.10 2.57 44.08 53.39 55.19 56.96 64.67 

Mobile 
Homes 

MobileHo
mes Count 2016-

21 

Baker et al. 2014, 
Rumbach et al. 

2020 
4999 7704 0 1412 2835 5523 90970 

Rainfall Anomaly Inches 2016-
21 

Tarhule (2005), 
Zhang et al. 

(2018) 
8.10 8.29 -18.88 2.08 7.37 13.68 42.73 

Flood 
Damage Damage $ 2016-

21 

Botzen et al. 
(2009), Boamah 

et al. (2015) 

14,291,7
20 

281,958,
400 - - - 100,000 10,000,5

10,000 
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Table 4.1 continued 

No. of NFIP 
Policies Policy Count 2016-

20 

Owusu-Ansah et 
al. (2019), 

Moreira et al. 
(2021) 

4442 16896 5 149 465 1969 324898 

Total Insured 
Value TIV $ 2016-

20 

Patankar and 
Patwardhan 

(2016), Wang 
and Sebastian 

(2021) 

1,906,41
4,000 

7,932,47
2,000 811,928 36,214,9

30 
145,480,

600 
762,326,

300 
163,000,
000,000 

Population 
Density 

PopDensit
y 

Count 
per Sq. 
Miles 

2016-
21 

Suriya et al. 
(2012), Santos et 

al. (2018) 
574.6 2311 1.5 47.9 117.8 381.3 71905.1 

Median 
Building 
Value 

MedBValu
e $ 2016-

21 

Schröter et al. 
(2014), Wing et 

al. (2020) 

3,692,61
6,000 

26,855,6
80,000 39,500 118,750 163,000 263,700 951,000,

000,000 

Percentage of 
Occupied 
Buildings 

PerOccupi
ed % 2016-

21 

Ramm et al. 
(2018), Drakes et 

al. (2021) 
0.84 0.09 0.13 0.81 0.86 0.91 0.97 

Median 
Building Age 

MedBLD
GAge Years 2016-

21 

Penning-Rowsell 
and Wilson 

(2006), Koc and 
Işık (2021) 

41 12 13 34 43 46 101 
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4.4.2 Control Variables 

Apart from the flood risk factors, this research has considered several other control variables. 

These variables are included in the causal model to control their effects so that true empirical 

relationships between the flood risk factors and the response variable can be derived. Table 4.1 

presents the descriptive statistics of all the predictors including the flood risk factors. It also 

includes the existing literature that supports the inclusion of the chosen predictors.  

1. Annual Flood Damage: It is evident that the extent of the flood damage influences the extent 

of flood insurance payout. The damage data was collected from the National Oceanic and 

Atmospheric Administration’s (NOAA) Storm Events database. The database mentions the 

dollar amount of property damage for different flood and storm events. For this research, the 

flood damage in a county in a year was calculated as the sum of damage from flash floods, 

floods, and coastal floods in that county during that year. 

2. Annual Anomalous Rainfall: The amount of rainfall is also an indicator for the level of flood 

damage. The rainfall data was collected from NOAA’s website. In this research, the annual 

anomalous rainfall amount has been utilized as the predictor instead of the annual rainfall 

amount as extra rainfall is more relevant to flood risk than the actual amount. The anomaly is 

calculated as the difference of the annual rainfall and the mean annual rainfall between 1901 

and 2000.   

3. NFIP Policies: It is evident that the number of NFIP policies in a county and the total insured 

values (TIV) of those policies directly influence the expected NFIP payout in that county. 

Therefore, they were considered as the control variables for developing the regression model. 

It should be noted that the flood insurance data was only available for five years between 2016 

and 2020. Hence, it was assumed that the number of NFIP policies and the total insured values 

of those policies remained the same as 2020 in 2021.   

4. County Characteristics: A number of county characteristics were also considered in the 

causal model as control variables. They are population density, median building value, 

percentage of buildings that were occupied, and median building age.  

Next, the pairwise correlations between the predictors were tested to ensure that there is no 

multicollinearity, i.e., high correlation among the predictors. Figure 4.5 shows the correlation 

matrix, where strong pairwise correlations can be noticed between (1) flood exposure and number 
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of NFIP policies (0.78), (2) flood exposure and total insured value of the NFIP policies (0.84), (3) 

social vulnerability and community resilience (-0.49), and (4) number of NFIP policies and total 

insured value of the NFIP policies (0.97). To avoid multicollinearity, community resilience, 

number of NFIP polices, and total insured value of NFIP polices were removed from the list of 

predictors. After removing those three predictors, pairwise correlations between the remaining 

predictors were checked again. None of the correlation coefficient was more than 0.4 or less than 

-0.3, which suggests eradication of multicollinearity among the predictors. 

 
Figure 4.5 Correlation Matrix 

Next, the predictors were standardized. This step was required to make sure that no variable 

is given higher or lesser significance due to the difference in their ranges. More importantly 

standardized regression coefficients can be compared to gauge the relative importance of different 

flood risk factors. Standardization follows equation 4.1 where 𝑥 is a predictor, 𝜇 is the mean of the 

predictor, 𝜎 is the standard deviation of the predictor, and 𝑧 is the predictor after standardization. 
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It should be noted that the standardized predictor, i.e., 𝑧 has a mean of 0 and a standard deviation 

of 1. All values of 𝑧 ranged between [-1, 1]. 

 
𝑧 = 	

𝑥 − 𝜇
𝜎  (4.1) 

4.4.3 Research Methods 

In statistical literature, two types of models co-exist (1) inferential models that are used for causal 

explanations and (2) predictive models that are used for forecasting (Breiman 2001, Shmueli et al. 

2010, Emmert-Streib and Dehmer 2021). It is important to note that the objective of this research 

is to develop a causal model therefore, prediction accuracy has not been prioritized. For developing 

the causal model, this research has adopted Linear Mixed Effects regression, which is also known 

as Linear Mixed Model (LMM). LMM is an extension of simple linear regression that can account 

for the hierarchical structure in the dataset, which for this research originates from data samples 

coming from different counties. LMM model is a popular choice in causal analysis and has been 

used in Huff et al. (2015), Bauer et al. (2018), Efendić (2021), etc. As explained earlier, the final 

dataset contained 4327 datapoints that belonged to 1813 unique counties. If one regression model 

with fixed regression coefficients is fitted to the whole dataset, it will not account for the 

heterogeneity among the samples. On the other hand, one regression model for each county is also 

not feasible due to lack of adequate datapoints. Therefore, the possible solution is to have fixed 

regression coefficients for the entire dataset along with random intercepts for different counties. 

The fixed coefficients account for the fixed effects part whereas the random intercepts account for 

the random effects part. Since it is a combination of fixed effects and random effects, it is known 

as a mixed effects model.  

 In addition to having random effects for each county, this research has considered the year 

(2016 to 2021) as a categorical variable to account for events that are common to all the counties 

in the dataset in a given year (Kousky et al. 2018). Equation 4.2 represents the LMM model fit by 

a restricted maximum likelihood estimation with a random effect for each county (1813 groups).  

 𝑦 = 	𝛼 + 𝜆3 + 𝑋𝛽 + 𝑍𝑢 + 𝜀 (4.2) 

Where y is a N×1 vector of the response variable, i.e., log transformed annual NFIP payout of a 

county, 𝛼 is a N×1 vector of fixed intercepts, 𝜆3 is a N×1 vector of the year fixed effects, X is a 

N×p matrix of p predictors, 𝛽 is p×1 vector of the fixed regression coefficients, Z is N×qJ design 
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matrix of q random effects and J groups, u is a qJ ×1 vector of q random effects for J groups, and 

𝜀 is a N×1 vector of the residuals that follow a normal distribution with zero mean and constant 

variance, N is the number of datapoints, i.e., 4327, and lastly, for one random intercept, q is 1 and 

J is the number of unique counties, i.e., 1813. The group size varied between 1 and 6.  

4.5 Results and Discussions 

Table 4.2 presents the outcomes of the LMM. It can be noticed that all the p-values in Table 4.2 

are less than 0.05, i.e., a 5% significance level. This indicates that all the predictors that have been 

used in the causal model are significant in explaining the changes in the annual NFIP payout in a 

county. The year fixed effects are also significant. These coefficients adjust the intercept for the 

regression model. For instance, the intercept for the year 2017 will be 12.15 – 0.34, i.e., 11.81. 

Similarly, the intercept for the year 2018 is 12.15 – 1.02, i.e., 11.13. It can also be noticed that 

Table 4.2 does not contain the coefficient for the year 2016 as 6 years have a degrees of freedom 

of 6 – 1, i.e., 5 years. Since the coefficient of 2016 is not included in Table 4.2, the intercept for 

the year 2016 will be 12.15 itself.  

 The rainfall anomaly and the flood damage have positive regression coefficients. This 

means that an increase in these two variables would increase the annual flood insurance claims in 

a county. Higher rainfall anomaly indicates higher precipitation than the average. If the rainfall 

anomaly is higher, there is more chance of floodings. As a result, there will be more flood insurance 

claims. The same is true for flood damage. For higher flood damage, the flood insurance claims 

are also expected to be higher. 

The population density of a county has a positive regression coefficient. This implies that 

an increase in population density would lead to more flood insurance claims. It is a known fact 

that higher population density intensifies the flood impact in a region (Diakakis 2014, Santos et al. 

2018). There are multiple reasons for that. First, higher population density increases the exposure. 

As a result, the potential of the flood affecting more households increases. More importantly, 

population density is positively correlated with the imperviousness of the surface (Hicks and 

Woods 2000, Sheng and Wilson 2009). Densely populated urban areas also have a higher 

concentration of infrastructure. Water cannot penetrate impervious surfaces like roads, buildings, 

parking lots, etc. Thus, converting wetlands and natural landscapes into impervious surfaces 
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reduces infiltration of rainfall water into the soil and increases surface runoff. As a result, the 

severity of flooding increases. 

Table 4.2 Regression Coefficients for LMM 

Variable Coefficient Std. Error z P>|z| 
Intercept 12.15 0.09 138.86 0.00 
Year = 2017 -0.34 0.12 -2.88 0.00 
Year = 2018 -1.02 0.12 -8.75 0.00 
Year = 2019 -0.73 0.11 -6.62 0.00 
Year = 2020 -0.98 0.11 -8.90 0.00 
Year = 2021 -0.57 0.11 -5.13 0.00 
Rainfall Anomaly 0.51 0.03 15.97 0.00 
Flood Damage 0.24 0.03 8.20 0.00 
Population Density 0.07 0.04 1.98 0.05 
Median Building value -0.12 0.03 -3.59 0.00 
Percentage Occupied Buildings 0.08 0.03 2.29 0.02 
Median Building Age -0.19 0.04 -5.17 0.00 
Flood Exposure 0.38 0.04 9.16 0.00 
Infrastructure Vulnerability 0.16 0.03 5.16 0.00 
Social Vulnerability 0.07 0.03 2.11 0.04 
No. of Mobile Homes 0.23 0.04 5.57 0.00 
Group Var 0.38 0.03   

 In the U.S., 80% of the population live in the urban areas. Also, majority of the large cities 

in the U.S. are located in the coastal areas and therefore are exposed to coastal floods. The same 

trend was noticed in the current dataset, where the counties that were exposed to both river and 

coastal floods had a mean population density of 1291 per square miles and a median population 

density of 276 per square miles. On the other hand, the mean population density of the counties 

that were exposed to only river floods was 287 per square miles and the median was 95 per square 

miles. The difference in the population density is apparent. It has been explained before that the 

severity of coastal floods is higher than that of river floods. Thus, urban areas that are exposed to 

coastal floods contribute more to flood insurance claims.  

 Negative regression coefficients can be noticed for median building value. This indicates 

that lower median building value leads to higher flood insurance payout. This is consistent with 

previous findings in Knighton et al. (2020). It could be due to the depressed value of homes in 
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low-lying lands. Siders et al. (2019) noted that the risk from climate related hazards is expected to 

decrease property value in the hazard exposed area. On the other hand, Grigg (2019) has found 

that repetitive loss properties account for 25-30% of the NFIP claims. It is safe to assume that the 

repetitive loss properties are located closer to the waterbodies and therefore exposed to severe 

flood hazard, which can lead to the decrease in the home price. Moreover, the Biggert-Waters Act 

of 2012 and the Grimm-Waters Act of 2013 that recommended reforms in NFIP placed more 

economic burden of flood losses on the at-risk properties. This reform has led to a reduction of 

floodplain property values (Indaco et al. 2019). The percentage of occupied buildings in a county 

has a positive regression coefficient. This means that an increase in the percentage occupancy will 

lead to more flood insurance claims. This might be related to flood insurance enrollment. With an 

increase in the percentage occupancy of the buildings, more people are expected to purchase flood 

insurance. That might increase the flood insurance claims.  

However, the age of the building has a negative regression coefficient. Therefore, an 

increase in the median building age in a county will decrease the flood insurance claims. This 

result contradicts findings from most of the past literature. New buildings are often built following 

new standards that are more robust in the face of flood hazards. Therefore, when exposed to flood 

hazard of similar severity, it is expected that a county with lower median building age will suffer 

lower flood losses and have lower flood insurance claim than that of a county with higher median 

building age. However, the used data suggests that counties with lower median age of buildings 

contribute more to flood insurance claims. There are a few possible explanations for this. First, 

new buildings are often constructed in the flood zones. For instance, Climate Central, a New Jersey 

based research group in the U.S., analyzed real estate organization – Zillow’s data and found that 

new construction in the 10-year flood zones in the U.S. has increased since 2010 (Flavelle 2019). 

Additionally, 24 U.S. cities including New York, Tampa, and Virginia Beach, etc., have built at 

least 100 homes in the 10-year flood zones since 2009. Newly constructed homes in a 10-year 

flood zone have a higher chance of having flood insurance. This might be the reason why the 

regression coefficient for median building age is negative. Second, Wing et al. (2010) have 

analyzed historical flood insurance claims outside of the 100-year flood zone and found that homes 

that were built after 1980 have historically suffered more flood damages hence had more flood 

insurance claims than that of homes that were built before 1980. This could be another reason why 

the regression coefficient for median building age is negative. Third, it has been explained before 
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that flood insurance is mandated for a home located within a 100-year flood zone in a NFIP 

participating community and has a federally backed mortgage. Older homes have a higher 

likelihood of paid off mortgages. As a result, the mandatory requirement for flood insurance might 

not exist for them. Therefore, they are free to discontinue the flood insurance once the mortgage 

is paid off. This is another possible reason why counties with older homes could have less flood 

insurance claims. Lastly, the depreciated value of old buildings can also contribute to lower flood 

insurance claims after getting damaged by floods. Residential property value depreciates over time. 

Since flood insurance coverage accounts for the property value, depreciated property can have less 

coverage and therefore less flood insurance claims. 

 It has been explained in previous sections that all the flood risk factors considered in the 

causal model have reinforcing effects on flood damage and subsequently flood insurance claims. 

The outcomes of the causal model also support that notion. It can be noticed that all the flood risk 

factors have positive regression coefficients. Therefore, any increase in the flood risk factors will 

increase the flood insurance payout in the U.S. For instance, if flood exposure increases, more 

buildings will be exposed to flood hazard. Increased exposure will also increase the likelihood of 

flood damage and flood insurance claims. The corresponding regression coefficient estimates the 

increase in the flood insurance payout due to increase in flood exposure. It can be noticed that the 

regression coefficient has a value of 0.38. So, if the flood exposure in a county increases by one 

standard deviation, the natural logarithm of the annual flood insurance payout in that county will 

increase by 0.38 times of its standard deviation. So, the actual change in the flood insurance payout 

will be e0.38, i.e., 1.46 times of its standard deviation. The standard deviations for the predictors 

and response variable can be noticed in Table 4.1. For instance, the standard deviation of flood 

exposure is $21.7 billion whereas the standard deviation of the annual NFIP payout is $71.8 million. 

Therefore, increasing the flood exposure by $21.7 billion will increase the average annual NFIP 

payout by 1.46×$71.8 million, i.e., $104.8 million.  

 Similarly, vulnerable infrastructure also leads to higher flood insurance payouts. It has been 

explained before that infrastructure acts as the first level of resistance against natural hazards. As 

a result, vulnerable infrastructure exacerbates the severity of flooding, which increases the extent 

of flood insurance claims. The regression coefficient for infrastructure vulnerability is 0.16. 

Following the same process explained previously, it was found that if the infrastructure 

vulnerability, measured in terms of per capita public assistance payout, increases by one standard 
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deviation, i.e., $184, the average annual NFIP payout will increase by e0.16×$71.8 million, i.e., 

$84.3 million. Social vulnerability decreases people’s ability to attenuate the risk of natural hazards. 

Therefore, higher social vulnerability potentially leads to higher flood damage and subsequently 

higher flood insurance payout. If social vulnerability in a county that is quantified by CDC 

increases by one standard deviation, i.e., 0.27, the average annual NFIP payout will increase by 

e0.07×$71.8 million, i.e., $77 million. Lastly, mobile homes are more likely to get damaged from 

natural hazards. If the number of mobile homes in a county increases by one standard deviation, 

i.e., 7704, the average annual NFIP payout will increase by e0.23×$71.8 million, i.e., $90.4 million. 

These relationships can help in forecasting future NFIP payout based on different 

counterfactuals. For instance, according to FEMA’s National Risk Index, New Orleans – the 

largest city of Louisiana currently has a combined flood exposure of $74.7 billion ($45.5 billion 

from coastal flood and $29.2 billion from river flood) (Zuzak et al. 2021). The 1st Street Foundation 

predicted that in 30 years the number of properties within the 100-year flood zone in New Orleans 

will become 1.67 times from 66,131 to 110,236 (1st Street Foundation 2023). Assuming that the 

coastal flood exposure will increase at the same rate, the combined flood exposure in New Orleans, 

Louisiana by 2030 will become $124.5 billion, i.e., an increase by $49.8 billion. Based on the 

developed causal model, this increase in flood exposure will increase the average annual NFIP 

payout by ($%;.=->;.>)@×$9;.B4
%$.>@

, $241 million if everything else remains the same as present. It 

should be noted that this is a conservative estimate since it does not take into account the price 

inflation of homes in the calculation. The S&P CoreLogic Case-Shiller U.S. National Home Price 

NSA Index monitors the fluctuations in the value of the U.S. residential housing market by 

monitoring single-family home purchase prices. The S&P Dow Jones Indices LLC (2023) records 

show the index has increased by approximately 4 times from 76.4 in January 1993 to 305.1 in May 

2023. If the increase in the housing price follows the same historical trend, it will become 4 times 

of the present price in the next 30 years. If the housing price increases by 4 times, the combined 

effect of housing price inflation and increased flood exposure by 67% will increase the expected 

annual NFIP payout by ($%;.=×;->;.>)@×$9;.B4
%$.>@×$999

, i.e., $2.04 billion. The research results facilitate this 

type of counterfactual analysis. On the other hand, the relationships can be utilized to quantify the 

impact of a risk reduction strategy or policy on the annual NFIP payout. For instance, if property 
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buyout is planned and estimated to reduce the flood exposure in New Orleans by 1%, it will reduce 

the expected annual NFIP payout by $20 million, i.e., 1% of $2.04 billion. 

Since the flood risk factors have been standardized before developing the causal model, 

their regression coefficients can also be used to compare their relative importance for explaining 

the annual flood insurance payout. It can be noticed that flood exposure has the highest coefficient 

value among the flood risk factors, which is followed by mobile homes, infrastructure vulnerability, 

and social vulnerability. Therefore, among the flood risk factors, flood exposure is the most 

significant in explaining the annual flood insurance payout. It is followed by mobile homes, 

infrastructure vulnerability, and social vulnerability. This outcome is also important as it provides 

insight into which risk factor should be focused first for reducing the flood insurance payout. 

Clearly, reducing flood exposure should be given the maximum priority. Property buyout from 

high-risk flood zones can reduce flood exposure of a county (Yildirim and Demir 2021, Miao and 

Davlasheridze 2022). Hence, it can be a viable risk reduction strategy. However, Hegger et al. 

(2014) have suggested developing a diversified portfolio of flood risk reduction strategies that 

combine flood risk mitigation, adaptation, and recovery to maximize the benefits from the suite of 

strategies. 

 Lastly, the residuals from the regression model were checked to test the validity of the 

normality assumption of the residuals. Figure 4.6(a) shows the histogram of the residuals. The 

residuals are approximately symmetric with a skewness coefficient of 0.24, which is less than one. 

Figure 4.6(b) shows the Q-Q plot of the residual. In the Q-Q plot, the horizontal axis shows the 

quantiles of a standard normal distribution. The vertical axis shows the sample quantiles of the 

residuals from the regression model. The scatter plot appears to be on the straight line, which 

resembles a normal distribution. Therefore, it is safe to believe that the residuals of the regression 

model did not violate the normality assumption.  
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(a)                                                                    (b) 

Figure 4.6 Residual Plots. (a) Histogram (b) Q-Q Plot 

4.6 Conclusion 

In the last two decades a mixed methodology of statistical methods, data analytics, and machine 

learning techniques have become more prominent in disaster risk reduction studies. Researchers 

have been using historical data to develop various types of empirical models to derive insights 

from those data. Following a similar approach, this chapter has developed a causal model that can 

explain the annual flood insurance payout in a county based on different flood risk factors. To 

develop the model, historical data was collected between 2016 and 2021 and used in a mixed 

effects regression. The outcomes show that flood risk factors such as flood exposure, infrastructure 

vulnerability, social vulnerability, and mobile homes had a statistically significant reinforcing 

effect on the flood insurance payouts. Hence, an increase in the flood risk factors would increase 

the annual flood insurance payout. Among the flood risk factors, flood exposure had the highest 

impact on the flood insurance payouts. It has been estimated that if the flood exposure in a county 

increases by one standard deviation, i.e., $21.7 billion, it will increase the average annual NFIP 

payout by $104.8 million. Therefore, the federal government and FEMA should prioritize reducing 

flood exposure by implementing policies such as discouraging new constructions in floodplains, 

buying out at-risk properties, etc. On the other hand, the government should also discourage mobile 

home parks in the floodplain as they are more susceptible to flood damages. Improving the 

resilience of existing infrastructure and reducing social vulnerability can also help the federal 
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government reduce the future cost of running the NFIP program. Since natural hazards are 

becoming more frequent and severe due to climate change, these risk reduction measures will be 

essential to keep the NFIP program solvent in future.  

 There are certain limitations to this research. First, the causal model has not been developed 

to predict the annual NFIP payout. Therefore, the predictive accuracy has not been tested and 

cross-validated. It should only be used for inferential purposes. In future, regression models that 

can accurately predict the future flood insurance payout can be developed using this data. Next, 

the flood exposure data used in the research was only available for one year. In absence of better 

alternative, it was assumed that flood exposure in a county was constant between 2016 and 2021, 

which might not be true due to climate change. Also, due to the dynamic nature of underlying 

control variables, the empirical relationships between flood risk factors and flood insurance payout 

might change in future. Therefore, the models should be updated periodically as more data 

becomes available. Attempts should also be made to develop the causal model at ZIP or postal 

code, census tract level. Also, the data driven models could be combined with existing hydrologic 

models to create more robust results. 
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 PREDICTING ANNUAL FLOOD INSURANCE PAYOUT 

Abstract 

This chapter presents a regression model that can predict county level insured flood loss to 

households, measured in terms of annual flood insurance payout, in the U.S. based on different 

factors such as rainfall anomaly, flood damage, flood exposure, infrastructure vulnerability, social 

vulnerability, number of flood insurance policies, total insured value, etc. The regression model 

has been developed using five years of historical flood insurance claims data between 2016 and 

2020. For developing the model, three regression techniques were adopted (1) Ordinary Least 

Square Regression, (2) Robust Regression, and (3) Generalized Linear Model. The final model, 

which uses the outcomes of those three models to predict the annual flood insurance payout for 

2021, produced a coefficient of determination of 0.95 on the test set. The mean absolute error for 

predicting the annual flood insurance payout in a county on the test set was $831178. Overall, the 

total flood insurance claims across all the counties in 2021 was $1.68 billion. The proposed model 

predicted it as $1.85 billion, which is a 9.8% prediction error. Therefore, the proposed model could 

be used as a cheaper alternative for predicting the insured flood losses in the U.S.  

5.1 Introduction 

Natural hazards cause extensive damage to human life, infrastructure, property, economy, etc. 

Historical data from Munich Re shows that the frequency of natural hazards has increased steadily 

since 1980. During that period, disasters due to natural hazards have caused a cumulative loss of 

$5.2 trillion globally, the majority of which were uninsured (Munich Re 2020). Among the natural 

hazards, losses due to floods are by far the highest on a global scale (Colgan et al. 2017, 

Dubbelboer et al. 2017). The U.S. is no exception to that (Munich Re 2020).  

There is no dearth of flood loss estimation models in the existing literature. For instance, 

Davenport et al. (2021) estimated that the cumulative loss from floods in the U.S. between 1988 

and 2017 has been $199 billion. Quinn et al. (2019) have analyzed 40 years of historical flood data 

and found that there is a 1% chance that the losses from river floods would exceed $78 billion and 

a 0.1% chance of exceeding $136 billion in any given year in the U.S. Armal et al. (2020) have 

stated that the direct flood losses in the U.S. have risen from $4 billion annually in 1980 to $17 
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billion annually between 2010 and 2018. Jevrejeva et al. (2018) have forecasted that the global 

flood loss can exceed an additional $1.4 trillion annually if the rise of global temperature is not 

maintained at 1.5 ◦C and reaches 2 ◦C. This can potentially cause an increase of the global sea level 

by an additional 11 cm.  

Like other natural hazards, flood losses are also shared among the stakeholders. Peng et al. 

(2014) and Wang et al. (2020) have listed four classes of stakeholders who are associated with 

losses from natural hazards. They are households, primary insurers, reinsurers, and governments. 

However, the flood loss is not necessarily shared equally among the stakeholders. There are several 

factors that influence this cost sharing such as government’s policy regarding flood insurance, 

insurance penetration rate, risk transfer to reinsurance, etc. Therefore, a stakeholder-centric flood 

loss and flood risk assessment is more insightful than a generic one as it reflects the true cost of 

floods to each class of stakeholder. Although there is plethora of flood loss and flood risk models, 

analysis on flood loss and flood risk from the perspective of a stakeholder is relatively 

underexplored, which emphasizes the need for this research.  

 In the U.S., the primary flood insurer and the government are the same entity. The 

government sponsored National Flood Insurance Program (NFIP) accounted for more than 95% 

of the primary residential flood insurance policies in 2018 (Kousky 2018). However, the flood 

insurance take-up rate in the U.S. is low. As a result, it has been observed in the aftermath of the 

flood related disasters that most of the sufferers are uninsured or underinsured (Kousky 2011). A 

congressional research report published in 2019 (Horn 2019) recorded the flood insurance take up 

rate for some of the recent flood events. The report estimated the average NFIP take up rate in the 

100-year flood zones for multiple flood events. For instance, the NFIP take-up rate within 100-

year flood zones after the South Carolina Flood in 2015 was found 30%, after Louisiana Flood in 

2016 was found 31%, after Hurricane Harvey in Texas was found 21%, and after Hurricane Irma 

in Florida was found 31%. Additionally, it has been found that the NFIP policies are often short 

lived (Michel-Kerjan et al. 2012). 

Under this situation, the federal government as the insurer of last resort compensates the 

disaster survivors who are underinsured and uninsured through FEMA managed Individual 

Assistance (IA) program. The Individuals and Households Program (IHP) within IA is the primary 

way the U.S. Federal Emergency Management Agency (FEMA) supports disaster survivors 

(Webster 2019). These two programs, i.e., NFIP and IHP together reflect the majority of the cost 
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of floods to the U.S. federal government. Among the two, NFIP reflects the insured loss while IHP 

reflects the uninsured loss. To estimate the uninsured flood losses, it is essential to estimate the 

insured losses first. That insured flood loss can be measured in terms of the NFIP payout. Therefore, 

estimating NFIP payout can help in estimating the cost of floods to the federal government. 

However, to the best of the authors’ knowledge, there is no existing model that can predict the 

extent of flood insurance claim, which is the gap this research aims to bridge.  

This paper presents a prediction model that can predict the annual NFIP payout in a county 

based on different factors such as flood damage, flood exposure, infrastructure vulnerability, social 

vulnerability, community resilience, number of NFIP policies, number of NFIP claims, total 

insured value, etc. The model has been developed using five years of historical NFIP payout data 

between 2016 and 2020 by adopting three regression techniques (1) Ordinary Least Square 

Regression, (2) Robust Regression, and (3) Generalized Linear Model. The fourth and the final 

ensemble model uses the outcomes of these three regression models to generate its own predictions. 

The ensemble model was used to predict the annual flood insurance payout of the flood affected 

counties for the year 2021. The models produced a coefficient of determination of 0.95 and mean 

absolute error of $831178 on the test set. The proposed model estimates the extent of financial 

burden from flood loss on the primary insurer, which is also a significant part of the financial 

burden on the government, to help the Federal Emergency Management Agency (FEMA) in its 

financial preparedness to pay for the post-disaster flood insurance claims. Additionally, the 

proposed model is cheaper as it uses historical payout data in estimating the insured flood losses 

in future.  

5.2 Research Background 

The NFIP, which is managed by FEMA, was created in 1968 under the National Flood Insurance 

Act. The reluctance of private insurers to provide flood insurance created the need for the National 

Flood Insurance Program (Kousky et al. 2020). Purchasing flood insurance was voluntary till 1973. 

After 1973, buying flood insurance was mandated for properties with mortgage from a federally 

regulated or backed lender that are located within 100-year flood zone by the Flood Disaster 

Protection Act of 1973. Munich Re reported in 2020 that there were 14.6 million properties in the 

U.S. that were at substantial flood risk, i.e., located in 100-year flood zone. The report also stated 
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that only 5% of all the single-family homeowners in the U.S. had flood insurance in 2020 (Munich 

Re 2020). 

The NFIP has been considered problematic almost since its inception. Schilling et al. (1987) 

found that the program had been largely unsuccessful in the coastal areas. Historical records show 

that between 1978 and 2017, NFIP collected $60 billion in premiums while paid $65 billion as 

payouts (Grigg 2019). Payment of flood insurance claims is one of the key operating expenses of 

the NFIP. However, the program pays one-third of its income from premiums to the financial 

intermediaries to underwrite the flood insurance policies although none of the flood risk is borne 

by these intermediaries (Grigg 2019). Repetitive loss properties account for 25-30% of the claims 

although they are only about 1% of the insured properties (Grigg 2019). NFIP has been using flood 

maps for determining the flood insurance premiums for households and businesses. The U.S. 

Department of Homeland Security (DHS) reported in 2017 that only 42% of those flood maps can 

adequately identify flood risk (DHS 2017). Despite the low take up rate, NFIP had a cumulative 

debt of $20.5 billion to the U.S. Treasury as of 2020 after the federal government forgave $16 

billion debt in 2016 (Grigg 2019, Horn 2020). It was projected in 2017 that the deficit of collected 

premium and the expected payout would remain $1.4 billion in future (CBO 2017).  

 Researchers have long been recommending reforms in NFIP. Michel-Kerjan and 

Kunreuther (2011), Akabas (2014), McShane and Wie (2019) have recommended risk-based 

premiums that reflect the exposure of the homeowners, unsubsidized rates, protection of low-

income groups, forgiveness of the debt to the U.S. treasury, reduction of exposure by reinsurance 

and CAT bonds, etc., for reforming NFIP. However, affordability of NFIP policies remains one of 

the key challenges for the lower-income households (Shively 2017). Frazier et al. (2020) claimed 

that an NFIP reform without any considerations for the socioeconomic vulnerability will create 

barriers for lower-income residents. On the other hand, Wagner (2022) has found that the 

willingness to pay for flood insurance is remarkably low in the U.S.  

In 2021, FEMA brought a new actuarial approach of risk rating that relates the flood 

insurance premium of a household or business to its true flood exposure. Previously FEMA used 

flood maps, which did not always reflect the true flood risk of a property (DHS 2017). All new 

policies from October 1, 2021, onwards are subject to this new risk rating method. FEMA sees this 

new approach as a transformational leap forward that will make flood insurance premium rates 

fairer and more equitable. FEMA estimated that Risk Rating 2.0 will immediately decrease the 
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monthly flood insurance premium for 23% of the policy holders. While 66% of them will see their 

monthly flood insurance premium increase by less than $10. The remaining 11% will face a 

monthly increase of flood insurance premium by more than $10 (FEMA 2022). However, there 

has been some controversy regarding this Risk Rating 2.0, as some states such as Louisiana could 

see an increase in premium for more than 80% of the policies (Murphy 2022).  

 Other than providing flood insurance to households, NFIP has a long-term objective to 

reduce federal expenditures on post-disaster assistance (Horn and Webel 2021). Therefore, NFIP 

is expected to ensure that future payouts are kept within limits. This requires the development of 

a model that can predict future payouts based on various factors. Utilizing historical payout data 

to derive empirical relationships between flood risk factors and NFIP payout can be one of the 

possible ways to enhance the understanding of NFIP payout. In the last two decades a mixed 

methodology of statistical methods, data analytics, and machine learning techniques have become 

more prominent in the flood risk related studies (Spekkers et al. 2014, Sadler et al. 2018, Desai 

and Ouarda 2021). Researchers have been using historical data to develop various types of 

empirical models to derive insights from those data.  

 Wing et al. (2020) have used historical NFIP redacted claims data to derive several insights 

on flood depth-damage functions that express flood damage to homes based on the depth of flood 

water inside the inundated home. They have found that the observed flood loss is a non-monotonic 

function of flood water depth. Mobley et al. (2021) have utilized the NFIP redacted claims data to 

develop a continuous flood hazard map for the Texas Gulf Coast region using a Random Forest 

model. Knighton et al. (2020) have also used historical flood insurance claims data to develop a 

model that can predict the number of parcel-level and census tract-level flood insurance claims in 

New York state using Random Forest classification and regression model. While their model is 

useful, it was only developed for the New York state. More recently, Ghaedi et al. (2022) have 

also utilized NFIP redacted claims data to predict the extent of flood losses in terms of the number 

of flood insurance claims based on different factors such as flood peak ratio, Giovanni flooded 

fraction, land slope, population per area, number of NFIP policies, etc. While the number of flood 

insurance claims is an important proxy for flood damage, it does not reflect the complete picture. 

The extent of flood damage is better reflected in terms of the total payout as it shows the magnitude 

of the financial burden. Additionally, their research did not consider factors such as infrastructure 

vulnerability, social vulnerability, existing resilience, etc. These factors influence the extent of 
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flood damage (Choi et al. 2019, Sanders et al. 2020, Koc and Işık 2021), which influences the 

NFIP payout. Therefore, the reviewed literature suggests that there is a need to develop a data-

driven multivariate prediction model that can predict the expected annual flood insurance payout 

so that it can be used by the decision makers to predict insured flood losses in future. 

5.3 Research Data and Methods 

This research has collected data from multiple sources for six years between 2016 and 2021. The 

regression models were developed using five years of data between 2016 and 2020, and the model 

performance was tested on 2021 data. All the collected data was aggregated at the county level to 

develop an unbalanced panel dataset where the panel unit is the county. It is important to note that 

the research has only considered the counties that had an annual flood insurance claim greater than 

zero and less than $500 million from 2016 to 2020 for training the models. In the training set, there 

were 1709 unique counties. On the other hand, there were 783 unique counties in the test set. 

Figure 5.1 shows the spatial distribution of the counties in the training set (Figure 5.1.a) and test 

set (Figure 5.1.b). It can be observed that the training set has representation from 48 states that 

excluded Alaska and Hawaii. Also, majority of the counties belong to the eastern half of the U.S. 

On the other hand, the test set is comprised of counties from 43 states, which excluded Alaska, 

Hawaii, Idaho, Maine, North Dakota, South Dakota, and Wyoming.  

 
(a)                                                                             (b) 

Figure 5.1 Spatial Distribution of Counties Analyzed in this research.  
(a) in Training Set and (b) in Test Set 
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The response variable for the prediction model is the annual NFIP payout in a county. The 

data was collected from FEMA’s open data portal that has the records of all the redacted NFIP 

claims. The annual NFIP payout in a county varied between zero and $4.4 billion in the training 

set. However, for developing the regression models, only the counties that had an annual NFIP 

payout of more than zero but less than $500 million were considered. This step removed 4 counties 

from the training set, which is approximately 0.11% of the total number of the remaining 

datapoints in the training set. The final training set had 3542 datapoints, each of which represented 

a county. There were 574 unique counties in 2016, 581 unique counties in 2017, 723 unique 

counties in 2018, 860 unique counties in 2019, and 803 unique counties in 2020. The descriptive 

statistics of the response variable can be found in Table 5.1.  

5.3.1 Predictor Variables 

For predicting the annual NFIP payout in a county, the regression models used different predictors. 

Table 5.1 lists all of them along with their descriptive statistics. It should be noted that the 

descriptive statistics are calculated on the training set only. Table 5.1 also demonstrates the 

literature that supports the inclusion of predictors. It is important to note that the supporting 

literature only claims relationships between the predictors and the flood risk in an area. Since the 

existing flood risk in an area influences the flood insurance payout in that area, it is safe to assume 

that the predictors influence the flood insurance payout, i.e., NFIP payout. The predictors were 

categorized into four types. They are (1) County Characteristics, (2) Hazard Characteristics, (3) 

Flood Risk Factors, and (4) Flood Insurance Characteristics. 

The first type of predictors is the county characteristics. These variables are the 

confounding factors that influence both the predictors and the response variables. The county 

characteristics that were considered in this research are population, area, median building value, 

percentage of occupied buildings, median building age, and climate zone. The first five county 

characteristics data was collected from the U.S. Census Bureau. In addition to these five county 

characteristics, this research has considered the climate zone of a county as a categorical predictor. 

The National Centers for Environmental Information identified nine climate zones in the 

contiguous U.S. (Karl and Koss 1984). Through this variable, the climate variation among the 

counties were captured. The percentages of counties in climate zones one to nine in the training 

set were 11%, 10%, 24%, 21%, 5%, 21%, 2%, 3%, and 3%, respectively. On the other hand, the 
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percentages of counties in climate zones one to nine in the test set were 19%, 4%, 24%, 22%, 1%, 

23%, 2%, 2%, and 3%, respectively. 

The hazard characteristics included rainfall data, flood damage data, and type of flood risk 

(river and/or coastal). It is evident that the extent of the flood damage influences the extent of flood 

insurance payout. The damage data was collected from the National Oceanic and Atmospheric 

Administration’s (NOAA) Storm Events database. The database mentions the dollar amount of 

property damage for different flood and storm events. For this research, the flood damage in a 

county in a year was calculated as the sum of damage from flash floods, floods, and coastal floods 

in that county during that year. The amount of rainfall is another indicator for the level of flood 

damage. The rainfall data was collected from NOAA’s website. In this research, the annual 

anomalous rainfall amount has been utilized as the predictor instead of the annual rainfall amount 

as extra rainfall is more relevant to flood risk than the actual amount. The anomaly is calculated 

as the difference of the annual rainfall and the mean annual rainfall between 1901 and 2000. The 

type of flood risk is another categorical variable that can have two possible values, i.e., river flood 

risk and/or coastal flood risk. Among the counties in the training set, 81% were exposed to river 

floods whereas the remaining 19% were exposed to river and coastal floods. On the test set 70% 

of the counties were exposed to river flood risk whereas the remaining 30% were exposed to river 

and coastal flood risk.  
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Table 5.1 List of Variables with Descriptive Statistics on Training Set 

Variable Variable 
Type 

Variable 
Code Unit Data  Supporting 

Literature Mean SD Min 25% 50% 75% Max 

Annual NFIP 
Payout Response  NFIP $ 2016-

21 NA 227827
9 

1832608
0 8 26849 87233 35742

1 
428323

100 

Population Predictor Population Count 2016-
21 

Rasch (2016), 
Moreira et al. 

(2021) 
245470 581259 1296 28417 68209 22227

7 
101057

20 

Area Predictor Area Sq. 
Miles 

2016-
21 

Ouma and 
Tateishi (2014), 
Moreira et al. 

(2021) 

808 1077 2 427 603 864 20057 

Median 
Building 
Value 

Predictor MedBValu
e $ 2016-

21 

Schröter et al. 
(2014), Wing et 

al. (2020) 

449831
0000 

2961595
0000 39500 118600 16380

0 
28060

0 
951000
000000 

Percentage of 
Occupied 
Buildings 

Predictor PerOccupie
d % 2016-

21 

Ramm et al. 
(2018), Drakes et 

al. (2021) 
0.84 0.09 0.13 0.81 0.86 0.91 0.97 

Median 
Building Age Predictor MedBLDG

Age Years 2016-
21 

Penning-Rowsell 
and Wilson 

(2006), Koc and 
Işık (2021) 

40 12 13 33 43 46 101 

Climate Zone Predictor Region Categ
orical Fixed Peng et al. (2022) NA NA NA NA NA NA NA 

Rainfall Predictor Anomaly Inche
s 

2016-
21 

Tarhule (2005), 
Zhang et al. 

(2018) 
8.69 8.42 -18.88 2.68 8.18 14.64 39.41 
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Table 5.1 continued 

Flood 
Damage Predictor Damage $ 2016-

21 

Botzen et al. 
(2009), Boamah et 

al. (2015) 
9612187 1911111

00 0 0 0 11300
0 

800000
1000 

Type of 
Flood Risk 
(River and/or 
Coastal) 

Predictor Risk Categ
orical Fixed Haer et al. (2018) NA NA NA NA NA NA NA 

Flood 
Exposure Predictor ExposureB $ 2022 

Stephenson and 
D'ayala (2014), 
FEMA (2021) 

5679103
000 

2161684
0000 0 193725

100 
52417
7800 

24120
27000 

313000
000000 

Infrastructure 
Vulnerability Predictor Infra $ 2016-

21 

Len et al. (2018), 
Sanders et al. 

(2020) 
1449542 8066068 0 0 0 39733

9 
338415

500 

Mobile 
Homes Predictor Mobile 

Homes Count 2016-
21 

Baker et al. 2014, 
Rumbach et al. 

2020 
4990 7681 0 1372 2797 5518 89895 

Social 
Vulnerability Predictor SOVI NA 

2016, 
2018, 
and 

2020 

Cutter et al. 2003; 
Zhang and You 

2014 
0.55 0.27 0.00 0.32 0.56 0.78 1.00 

Community 
Resilience Predictor RESL NA 2020 

Cutter et al. 
(2014), Choi et al. 

(2019) 
55.12 2.58 45.98 53.40 55.21 56.99 64.67 

No. of NFIP 
Policies Predictor Policy Count 2016-

20 

Owusu-Ansah et 
al. (2019), 

Moreira et al. 
(2021) 

4377 16394 5 146 462 1915 324898 

Total Insured 
Value Predictor TIV $ 2016-

20 

Patankar and 
Patwardhan 

(2016), Wang and 
Sebastian (2021) 

1845072
000 

7471702
000 811928 345898

60 
14175
1400 

72824
8200 

129000
000000 
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The flood risk factors included flood exposure, infrastructure vulnerability, mobile homes, 

social vulnerability, and community resilience. The flood exposure data was collected from 

FEMA’s National Risk Index (Zuzak et al. 2021). To estimate the exposure to river and coastal 

flood hazards, the hazard occurrence and susceptible zone polygons (as suggested by FEMA) are 

overlapped with the appropriate administrative polygons (county for this paper). The resulting 

intersecting shape measures the area of exposure. The number of buildings within that area is the 

measure of flood exposed buildings and the aggregated property value of those flood exposed 

buildings represents the flood exposure. The detailed procedure for the exposure calculation can 

be found from FEMA’s National Risk Index’s Technical Documentation (Zuzak et al. 2021). The 

flood exposure in a county is calculated as the sum of the exposure from river and coastal flood 

hazard. It should be noted that the data on flood exposure is only available for one year. The values 

are in 2022-dollars. Therefore, the exposure has been assumed constants for all six years between 

2016 and 2021 due to lack of better data. Another factor that increases the likelihood of flood 

damage is the number of mobile homes in a county. It has been found that mobile homes are more 

prone to flood damage (Baker et al. 2014, Rumbach et al. 2020). Hence, it has been considered as 

a predictor in this research.  

Infrastructure works as the first line of protection against natural hazards and vulnerability 

is defined as the measure of proneness to threat scenarios that include natural hazards, intentional 

attacks, etc., (Ezell 2007). Vulnerable infrastructure often leads to more damage from natural 

hazards. U.S. federal government reimburses the state, local, tribal, and territorial (SLTT) 

governments to repair, restore, reconstruct, or replace their disaster damaged infrastructure in case 

of a presidentially declared major disaster through its Public Assistance (PA) program 

(Congressional Research Service 2021). The amount of federal support received by a county can 

be used as proxy variable to gauge the infrastructure vulnerability in that county (Bhattacharyya 

et al. 2023). The PA data was collected from FEMA’s open data portal. The PA dataset was used 

to calculate the annual public assistance payout in county, which has been used as the predictor in 

the prediction model. 

 Social vulnerability includes the socio-economic and demographic factors that increase or 

decrease the impacts of natural hazards on a community (Tierney et al. 2001, Heinz Center 2002). 

Previous researchers have found that the impacts of disasters are biased towards the socially 

vulnerable population. For instance, Campbell et al. (2020) have found that vulnerable populations 
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suffer the most damage from floods. These people include seniors, people with functional and 

access needs, people of lower economic status, and other minorities. Several research works have 

analyzed the role of multiple socio-demographic factors on flood vulnerability and have found 

significant impact (Cutter et al. 2003, Zhang and You 2014, Dandapat and Panda 2017, Emrich et 

al. 2020, Drakes et al. 2021, Koc and Işık 2021). This research utilizes the Social Vulnerability 

Index (SVI) proposed by the Centers for Disease Control and Prevention (CDC). The index is 

developed by utilizing 16 socioeconomic variables such as poverty level, unemployment, health 

insurance, race, ethnicity, disability, elderly population, etc. The SVI data for each county, which 

was collected from CDC’s website, was only available for the years 2016, 2018, and 2020. 

Therefore, the SVI for 2017 and 2019 were calculated by interpolating, i.e., by taking average in 

this case. Additionally, when this research was conducted, the SVI for 2021 was not published. So, 

the SVI for 2021 was assumed to be equal to that of 2020.  

 The National Institute of Standards and Technology (NIST) has defined Community 

Resilience as the ability of a community to prepare for anticipated natural hazards, adapt to the 

altering conditions, and withstand and recover speedily after the disaster (NIST 2020). The existing 

coping capacity of a community is an important predictor for estimating the impact of a natural 

hazard in that community (Scheuer et al. 2011, Yang et al. 2013, Terti et al. 2015). Choi et al. 

(2019) have proposed that a disaster resilient community needs capacities in its all seven layers of 

critical infrastructures. These seven layers are civil, civic, social, educational, financial, 

environmental, and cyber. However, this research has utilized the Baseline Resilience Indicator 

for Communities (BRIC) developed by University of South Carolina’s Hazards and Vulnerability 

Research Institute because of the availability of relevant data (Cutter et al. 2014). The indicator is 

developed based on 49 factors representing six types of resilience: social, economic, community 

capital, institutional capital, housing or infrastructure, and environmental (Cutter et al. 2014). The 

community resilience data was also collected from FEMA’s National Risk Index database for the 

year 2020. The community resilience has been assumed constant for other years due to lack of 

available data.  

 The fourth type of predictors are related to the flood insurance characteristics of the county. 

It is evident that the number of NFIP policies in a county and the total insured values (TIV) of 

those policies directly influence the expected NFIP payout in that county. Therefore, they were 

considered as the predictors for developing regression models. It should be noted that the flood 
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insurance data was only available for five years between 2016 and 2020. Hence, it was assumed 

that the number of NFIP policies and the total insured values of those policies remained the same 

as 2020 in 2021. Next, pairwise correlations between the predictors were checked. Figure 5.2 

shows the correlation matrix.  

 
Figure 5.2 Correlation Matrix 

It is important to note that the correlation matrix does not contain the two categorical predictors as 

they are not continuous variables. From Figure 5.2, strong pairwise correlations can be noticed 

between (1) population and flood exposure (0.54), (2) population and mobile homes (0.58), (3) 

flood exposure and number of NFIP policies (0.79), (4) flood exposure and total insured value of 

the NFIP policies (0.84), (5) number of NFIP policies and total insured value of the NFIP policies 

(0.96), and (6) social vulnerability and community resilience (-0.49). To avoid multicollinearity, 

population, community resilience, number of NFIP polices, and total insured value of NFIP polices 
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were removed from the list of predictors. After removing those three predictors, pairwise 

correlations between the remaining predictors were checked again. None of the correlation 

coefficient was more than 0.4 or less than -0.3, which suggests eradication of multicollinearity 

among the predictors.  

5.3.2 Research Methods 

The research methodology is shown in Figure 5.3. The first step involved data cleaning, 

aggregating, testing pairwise correlations, etc. Next, four prediction models were developed using 

all the predictors presented in Table 5.1 excluding population, community resilience, number of 

NFIP policies, and total insured value to avoid any multicollinearity issue. In statistical literature, 

two types of models co-exist (1) inferential models that are used for causal explanations and (2) 

predictive models that are used for forecasting (Breiman 2001, Shmueli et al. 2010, Emmert-Streib 

and Dehmer 2021). It is important to reiterate that the objective of this research is to develop 

prediction models that can predict the response variable, i.e., annual NFIP payout in a county with 

adequate accuracy. Therefore, the models should only be used for prediction purposes and not for 

inferential, i.e., causal purposes.  

 
Figure 5.3 Research Framework 

For developing the models, three different regression techniques have been used. They are 

(1) Ordinary Least Square Regression, (2) Robust Regression, and (3) Generalized Linear Model. 

The final ensemble model used the outcomes of these three models to derive its own predictions. 

These regression models are simpler to develop and understand. Also, they provide the flexibility 
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of analyzing the coefficients of different predictors to understand how a predictor is influencing 

the response variable. More importantly, these models produced adequate prediction accuracy for 

this research. Hence, this research did not try any other advanced models. 

 As explained earlier, the models were developed using five years of data between 2016 and 

2020. The models’ performances, i.e., goodness of fit was quantified based on four metrics (1) the 

coefficient of determination (R2), (2) mean absolute error (MAE), (3) percentage error, and (4) 

correlation between the actual values of the response variables and the corresponding prediction 

errors. The percentage error measures the deviation of the predicted sum of NFIP payout of all 

counties and the actual sum of NFIP payout of all the counties. This variable is important to FEMA 

because it reflects the total amount of flood insurance claims that will generate in a year.   

Ordinary Least Square Regression (OLS) 

Linear regression is the simplest form of regression that assumes a linear relationship between the 

explanatory and response variable. It fits a straight line or surface that minimizes the differences 

between the actual and the predicted values of the response variable. The linear regression 

technique uses the least squares method to find the best fit line for a set of paired data. The line is 

represented by equation 5.1, where y is the response variable, i.e., the annual NFIP payout in 

county, a is the intercept, b is the vector of slopes of the line, X is the vector of predictors, and 𝜖 

is the residual error that follows a normal distribution with zero mean and constant variance σ.  

 𝑦 = 𝑎 + 𝑋𝑏 + 𝜖	 (5.1) 

The ordinary least square method minimizes the mean squared error (MSE) shown in equation 5.2 

where N is the number of datapoints to derive the values of a and b.  

 
𝑀𝑆𝐸 =

1
𝑁[(𝑦 − (𝑎 + 𝑋𝑏))%

C

5D$

	 (5.2) 

Robust Regression (RR) 

Linear regression often suffers due to the presence of outliers in the dataset. The outliers are the 

points that have high residual errors. These points can have substantial influence of the regression 
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coefficients. Robust regression is a substitute to ordinary least square regression when the data is 

dominated by outliers or influential observations. The regression equation is the same as the linear 

regression that is shown in equation 5.1. However, the objective function for robust regression is 

different from equation 5.2. The objective function for robust regression is shown in equation 5.3, 

where 𝜌 is a function of the residual error 𝜖. It can be noticed that for ordinary linear regression, 

𝜌(𝜖.) = 𝜖.% resembles the objective function of linear regression, i.e., equation 5.2.  

 
[𝜌(𝜖.) = [𝜌(𝑦 − (𝑎 + 𝑋𝑏))

C

5D$

	 (5.3) 

The robust regression uses a method named Iteratively Reweighted Least Squares (IRLS) 

to assign weights to each datapoint. This method is less sensitive to major changes in small parts 

of the data thus making it less sensitive to outliers. The IRLS algorithm iteratively computes the 

weights of the datapoints. At initialization, the algorithm gives equal weight to each data point. 

Then it estimates the model coefficients using ordinary least squares, i.e., the method followed in 

ordinary linear regression. The algorithm computes the weights (wi) after each iteration. It assigns 

lower weights to points that are farther from the model predictions in the previous iteration. This 

research has used the Huber estimator for the objective function and weights (Huber 1964). The 

Huber estimator computes the objective function and the weight function as equation 5.4 and 5.5, 

respectively, where k is the tuning constant and equals to 1.345 times of the standard deviation of 

the residual error, i.e., σ.  

 

𝜌E(𝜖) = ]

1
2
𝜖%																𝑓𝑜𝑟	|𝜖| ≤ 𝑘

𝑘|𝜖| −
1
2
𝑘%		𝑓𝑜𝑟	|𝜖| > 𝑘

	 (5.4) 

 
𝑤E(𝜖) = b

1																𝑓𝑜𝑟	|𝜖| ≤ 𝑘
𝑘
|𝜖|
												𝑓𝑜𝑟	|𝜖| > 𝑘  (5.5) 

The algorithm then computes model coefficients (a and b) using the weighted least squares 

method. Iteration is stopped when the coefficient values converge within a specified limit. This 

algorithm tries to find the curve that fits the majority of the data using the least-squares approach, 

while minimizing the effects of outliers. 
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Generalized Linear Model (GLM) 

Linear regression assumes normal distribution of the residuals. This assumption does not always 

hold. In such cases, Generalized Linear Model (GLM) is adopted. In these models, the response 

variable is assumed to follow a distribution from the exponential family, which could be Poisson, 

Gamma, Tweedie, etc. For modeling the claims in the insurance industry, where a lot of datapoints 

are clustered in the region of zero, Tweedie distribution is popular (Shi 2016, Yang et al. 2018, 

Fontaine et al. 2020). Hence, it has been used in this research. There are three components of a 

GLM.  

• Random Component: It denotes the probability distribution of the response variable. For 

this research, the response variable is assumed to follow a Tweedie distribution.  

• Systematic Component: It denotes the linear combination of the predictor variables. 

• Link Function: It denotes the link between the Random component and the Systematic 

component. The logarithmic function has been used as the link function for this research.  

The mean regression structure of the Tweedie regression is shown in equation (5.6) 

 log(𝜇) = 	𝑎 + 𝑏𝑋 (5.6) 

The response variable y ~ Tweedie (𝜇, 𝜑𝜇F), where 𝜇 is mean, 𝜑 is the scale parameter (𝜑 > 0), 

and p is the power parameter for the Tweedie distribution, which was kept at 1.05 for this research. 

The variance of the distribution is measured by 𝜑𝜇F . The parameters are estimated through 

Maximum Likelihood Estimation.  

5.4 Results 

Table 5.2 presents the regression coefficients for the three regression models developed using 

multiple linear regression (OLS), robust regression (RR), and generalized linear model (GLM). 

Among the predictors, positive coefficients can be noticed for flood damage, rainfall anomaly, 

flood exposure, infrastructure vulnerability. This indicates that an increase in these variables would 

increase the annual NFIP payout in a county. Although the regression coefficients are important, 

the primary objective of this research is to predict the annual NFIP payout with adequate accuracy. 

Hence, it is more important to assess the predictive performance of the models. 
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Table 5.2 Regression Coefficients for Initial Models 
 OLS RR GLM 

Predictors Coeff p-value Coeff p-value Coeff p-value 

Intercept -5930000 0.048 -4023000 0.000 12.6 0.000 

Flood Damage 0.05 0.000 0.05 0.000 5.03×10-10 0.000 

Rainfall Anomaly 146100 0.000 18400 0.000 0.06 0.000 

Area 220 0.482 90 0.000 2.00×10-4 0.127 

Median BLDG Value -8.54×10-6 0.311 -4.68×10-6 0.000 -1.70×10-11 0.000 

Percentage Occupied 1262000 0.622 173600 0.226 0.20 0.764 

Median BLDG Age -22960 0.363 -5751 0.000 -0.01 0.157 

Flood Exposure 3.24×10-5 0.010 2.85×10-5 0.000 3.54×10-12 0.008 

Infra Vulnerability 0.65 0.000 0.48 0.000 2.52×10-8 0.000 

Social Vulnerability -1889000 0.070 -251600 0.000 -1.01 0.000 

Mobile Homes 128 0.001 31 0.000 4.18×10-5 0.000 

River Flood Risk -4318000 0.000 -688500 0.000 -2.5 0.000 

Climate Region 1 6955000 0.000 4200000 0.000 0.8 0.286 

Climate Region 2 8774000 0.000 4531000 0.000 2.3 0.004 

Climate Region 3 9211000 0.000 4725000 0.000 2.4 0.001 

Climate Region 4 7573000 0.000 4499000 0.000 2.2 0.001 

Climate Region 5 6921000 0.001 3798000 0.000 2.5 0.006 

Climate Region 6 10970000 0.000 4940000 0.000 3.3 0.000 

Climate Region 7 8166000 0.001 4145000 0.000 -0.6 0.744 

Climate Region 8 7088000 0.001 4050000 0.000 0.1 0.950 

As explained previously, the predictive performances of the models have been assessed 

based on (1) the coefficient of determination (R2), (2) mean absolute error (MAE), (3) percentage 

error, and (4) correlation between the actual values of the response variables and the corresponding 

prediction errors. Table 5.3 displays the performance metrics for OLS, RR, GLM, and the 

Ensemble model on the training set. It has been explained before that the ensemble model used the 
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outcomes of the OLS, RR, and GLM models to predict the annual NFIP payout in a county. The 

prediction of the ensemble model is calculated as the average of the predictions from the OLS, RR, 

and GLM models.  

Table 5.3 Predictive Performance of Initial Models on the Training Set 
Performance Metrics OLS RR GLM Ensemble 

R2 0.37 0.41 0.45 0.46 

MAE $2,973,688 $2,221,755 $2,617,809 $2,566,557 

Percentage Error 24.89% -33.96% -0.04% -3.05% 

Error Correlation 0.76 0.83 0.67 0.77 

From Table 5.3, it can be noticed that none of the four models has performed satisfactorily. 

In terms of the coefficient of determination, the ensemble model has performed the best, although 

the R2 value is not high. The MAE shows the average error in predicting the annual NFIP payout 

of a county. It can be noticed that the robust regression model has the lowest MAE among the four 

models. This is due to the ability of robust regression to reduce weights of outliers in the dataset. 

However, the MAE is still very high. For each county, the RR model on average produced an error 

of $2.2 million. The percentage error shows the difference between the total actual NFIP payout 

and the total predicted NFIP payout as a percentage of the total actual NFIP payout. It can be 

noticed that the GLM and the ensemble modes have predicted the total payout with very high 

accuracy. However, both models struggle in terms of the other three performance metrics.  

Due to lack of adequate predictive performance of the initial models, this research has 

considered an additional predictor, which is the number of annual NFIP claims in a county. As 

explained in the Research Background section, Ghaedi et al. (2022) have recently developed a 

multivariate prediction model that can predict the number of flood insurance claims in a county 

based on different flood characteristics with adequate accuracy. This research takes advantage of 

that development and uses it as a predictor for predicting the expected flood insurance payout. 

Therefore, the final model uses all the predictors from the initial models as shown in Table 5.2 

along with the number of annual NFIP claims in a county for prediction purposes. Again OLS, RR, 

GLM, and ensemble models were developed following the same procedure. Like the initial models, 

the ensemble model in this case also derived its predictions based on the outcomes from the OLS, 

RR, and GLM models. Table 4 shows the predictive performance of the final models.  
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Table 5.4 Predictive Performance of Final Models on Training Set 
Performance Metrics OLS RR GLM Ensemble 

R2 0.93 0.91 0.64 0.93 

MAE $842,985 $781,526 $1,988,887 $885,639 

Percentage Error 11.27% -1.61% 0.20% 3.29% 

Error Correlation 0.28 0.60 -0.09 0.26 

It can be noticed that the predictive performances have significantly improved after the 

addition of the new predictor. In terms of the coefficient of determination, the OLS, RR, and 

ensemble model have produced high values. The MAE values of the OLS model and the ensemble 

model are similar. The RR model has produced the lowest MAE, which is due to giving less 

weights to the outliers. In terms of the percentage error, the RR and ensemble model produced 

similar performances. However, the correlation between the error and the actual values is 

significantly higher in the RR model than that of the ensemble model. This indicates the RR model 

struggled with predicting the NFIP payout of those counties where the values are in the higher 

region. This is again due to giving less weights to those counties that have higher annual NFIP 

payouts. Based on all these performance metrics, this research chose the ensemble model for the 

prediction purpose. 

Table 5.5 shows the performance of the final ensemble model on the test set. It can be 

noticed that the final ensemble model has produced a coefficient of determination of 0.95, which 

is very high. The MAE is $831178, which is better than the training set. However, the correlation 

between the actual values and the residual error is still high. This can be considered as one of the 

limitations of this model. The percentage error is also less than 10%. In 2021, the total actual NFIP 

payout was $1.68 billion whereas the final ensemble model predicted total annual NFIP payout of 

$1.85 billion. Therefore, the model overestimated the total flood insurance payout by 

approximately $170 million. Figure 5.4 shows the scatter plot of the actual vs predicted annual 

NFIP payouts of 783 counties in the test set. It can be noticed that the majority of the datapoints 

either fall on the regression line or very close to the regression line. 

Table 5.5 Predictive Performance of Final Ensemble Model on Test Set 

 R2 MAE Percentage 
Error 

Error 
Correlation 

Test Set 0.95 $831,178 9.79% 0.60 

Null Model NA $3,581,886 NA NA 
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Lastly, to prove the robustness of the predictions, the performance of the ensemble model 

was compared to that of the null, i.e., mean only model. In the null model all predictions are 

assumed to be equal to the mean of the variable. It is a popular benchmark for testing the statistical 

power of the prediction model in explaining the variance of the data. The performance of the null 

model is also shown in Table 5.5. It can be noticed that the MAE of the null model is reduced by 

approximately 77% by the final ensemble model, which proved the robustness of the developed 

model.  

 
Figure 5.4 Scatter Plot of Actual vs Predicted Annual NFIP Payout on Test Set 

In the next step, the nature of the residual error in each state was tested. Table 5.6 shows 

the actual and predicted NFIP payout for each state. It can be noticed that Louisiana received the 

highest NFIP payout in 2021. This is due to the widespread destruction caused by Hurricane Ida. 

It also caused severe floods in the northeastern states such as New York, New Jersey, Pennsylvania, 

and Connecticut (Livingston 2021). The actual NFIP payout in Louisiana in 2021 was 

approximately $959 million, which the ensemble model predicted as $969 million. The actual and 

predicted amount for New York were $111 million and $103 million, respectively. For New Jersey, 

the actual NFIP payout was $274 million, which was predicted as $247 million. It can be noticed 

that the model has overestimated the annual NFIP payout for multiple states such as Texas, Florida, 

Alabama, Mississippi, North Carolina, Connecticut, etc. This can be considered another limitation 

of the proposed model.  



 
 

139 

Table 5.6 State wise Comparison of Actual and Predicted Annual NFIP Payout in 2021 

State Actual NFIP Payout in 
2021 

Predicted NFIP Payout 
in 2021 

Error in 
Prediction 

AL $20,305,460 $24,889,210 $4,583,750 
AR $3,030,171 $5,684,480 $2,654,309 

AZ $2,929,048 $3,928,291 $999,243 
CA $4,287,283 $4,602,869 $315,586 

CO $474,908 $1,461,655 $986,747 
CT $3,297,198 $23,096,620 $19,799,422 

DE $2,392,564 $2,402,618 $10,054 
FL $15,305,920 $42,414,640 $27,108,720 

GA $6,015,034 $15,872,970 $9,857,936 
IA $328,829 $464,338 $135,509 

IL $1,363,332 $2,665,297 $1,301,965 
IN $3,950,140 $4,878,076 $927,936 

KS $867,276 $1,144,596 $277,320 
KY $18,752,430 $24,658,420 $5,905,990 

LA $959,352,500 $969,094,200 $9,741,700 
MA $2,647,111 $4,378,599 $1,731,488 

MD $7,123,649 $13,698,820 $6,575,171 
MI $2,662,786 $9,822,356 $7,159,570 

MN $5,610 $37,407 $31,798 
MO $2,731,713 $4,522,568 $1,790,855 

MS $22,292,780 $51,854,500 $29,561,720 
MT $1,947 $71,168 $69,221 

NC $12,292,140 $27,096,980 $14,804,840 
NE $234,781 $348,338 $113,557 

NH $839,257 $364,551 -$474,707 
NJ $273,714,600 $247,391,900 -$26,322,700 

NM $390,758 $1,134,124 $743,367 
NV $36,652 $325,155 $288,502 

NY $111,067,600 $108,304,100 -$2,763,500 
OH $2,819,269 $3,274,491 $455,222 
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Table 5.6 continued 

OK $3,044,045 $3,626,120 $582,075 

OR $235,359 $732,830 $497,471 
PA $79,663,810 $67,506,410 -$12,157,400 

RI $1,239,834 $1,705,389 $465,555 
SC $5,109,030 $13,677,960 $8,568,930 

TN $55,065,840 $50,429,740 -$4,636,100 
TX $43,268,330 $83,154,220 $39,885,890 

UT $91,195 $1,214,148 $1,122,953 
VA $1,566,461 $12,383,320 $10,816,859 
VT $270,266 $341,405 $71,140 
WA $11,222,840 $11,475,810 $252,970 
WI $255,049 $1,274,774 $1,019,725 
WV $4,797,486 $5,150,959 $353,473 

5.5 Conclusion 

In the last two decades a mixed methodology of statistical methods, data analytics, and machine 

learning techniques have become more prominent in flood loss estimation research. Researchers 

have been using historical data to develop various types of empirical models to derive insights 

from those data. Following a similar approach, this paper has developed a regression model that 

can predict the county level annual NFIP payout with reasonable accuracy. The model was 

developed using historical flood insurance claims data between 2016 and 2020, and the 

performance of the model was tested on the 2021 data. The model predicted the annual NFIP claim 

originating in a county in 2021 with a mean absolute error of $831,178. It has been shown that the 

model was able to predict the flood insurance claims that came out of Louisiana after it was 

devastated by hurricane Ida in 2021 with reasonable accuracy.  

 The proposed model provides a cheaper alternative for estimating the insured flood losses 

in the U.S. Once the insured flood losses are estimated, it can be used to predict the extent of 

uninsured losses in a county. Therefore, the proposed model can be useful to disaster management 

agencies for estimating the cost of future floods to the primary insurer and the government. It 

should be noted that recursive modeling is required to keep the model grounded on the latest data. 
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As more data becomes available, it should be incorporated into the model to fine tune the model’s 

outcomes.  

 There are certain limitations to this research. First, linear regression requires normality 

assumption for the residuals. In this case, the response variable, i.e., the annual NFIP payout did 

not follow a normal distribution. This is a violation of the normality assumption. However, since 

the objective of this paper is not to make causal inference based on regression coefficients, the 

normality assumption was neglected as the developed model produced sufficient prediction 

accuracy on the training and test set. Second, the flood exposure data used in the model is static in 

nature. The data was only available for the year 2022. In absence of better alternatives, it was 

assumed that the flood exposure remained constant between 2016 and 2022. This might not be true 

given the adverse effects of climate change. Lastly, the model requires accurate estimation of flood 

damage as it is used as a predictor. Flood damage calculation is a challenging task. These 

limitations provide the ground for future research. In future, non-parametric machine learning 

models can be developed so that they do not require the normality assumption of the response 

variable. Also, the data driven models could be combined with existing hydrologic models to 

create more robust results. 
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 CONCLUSION 

This chapter summarizes the research results, contributions to the body of knowledge, research 

limitations, and recommendations for future research.  

6.1 Summary and Contributions to the Body of Knowledge 

The National Flood Insurance Program (NFIP) provides affordable flood insurance to more 

than four million households in the U.S. The NFIP faces significant financial challenges, being 

heavily indebted to the U.S. treasury (Grigg 2019) and anticipating further debt increase due to the 

escalating frequency and severity of natural hazards (CBO 2017). One key factor contributing to 

the insolvency issue is the low flood insurance take-up rate in the U.S. (Kousky 2011, Michel‐

Kerjan et al. 2012, Kousky et al. 2018), with FEMA's designated 100-year flood zones largely 

underestimating actual flood risk (1st Street Foundation 2020). Moreover, the NFIP premiums are 

not risk-based, and bureaucratic limitations hinder the program's ability to adjust premiums 

adequately. Additionally, the NFIP serves as the insurer of last resort, sometimes covering 

households deemed uninsurable by private flood insurers, which creates further pressure on the 

program. The presence of asymmetrically used information between the insurer and insured adds 

to the challenges, with a substantial number of claims originating from repetitive loss properties 

(Grigg 2019). To address all these challenges and to keep the NFIP solvent, this research has 

answered three fundamental questions that policy makers need to answer. They are (1) how to 

increase the NFIP take-up rate, (2) how to reduce the likelihood of large payouts in the future, and 

(3) how to predict the future payouts. Answering these three questions can help the policy makers 

to take additional steps, design new floodplain policies, etc., that can keep the NFIP running in the 

long term.  

 It has been claimed previously that the availability of post-disaster federal assistance 

reduces the motivation of the households to insure themselves against future floods. This event is 

popularly known as Charity Hazard. Researchers have found conflicting evidence of the presence 

of charity hazard in the U.S. flood insurance market. To address that question, this research has 

utilized a propensity score-based approach while utilizing relatively new data to compare the post-

disaster flood insurance enrollment. The used approach is beneficial as it compares the outcome 
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variables while balancing the effects of the underlying confounding factors such as flood damage, 

new federal mortgages, etc. It has been found that the receivers of the financial assistance from the 

government are more inclined to purchase flood insurance than those that did not receive any 

financial assistance. The research outcomes showed that the average annual difference in the flood 

insurance enrollment between counties that received IHP assistance and their counterparts that did 

not receive IHP assistance was 5.2% for the number of NFIP policies and 4.6% for the total insured 

value of those NFIP policies. Additionally, this research has developed a dose-response function 

that shows the change in the flood insurance enrollment based on different levels of IHP assistance. 

The developed dose-response function found that for every 1000 households in a county that 

received IHP payout, the percentage increase in the number of NFIP policies was 3.41%. On the 

other hand, for each million-dollar IHP payout in a county, the total insured value of the NFIP 

policies increased by 1.96% in the following year. Therefore, IHP assistance did not crowd out the 

demand for flood insurance. In other words, Charity Hazard does not exist in the U.S. flood 

insurance market.  

 This knowledge is significant as it can change the way federal assistance is thought of. 

Currently, IHP is considered a program that helps disaster survivors. The rising cost of IHP and 

its negative externalities such as crowding out the demand for flood insurance, etc., have been 

widely discussed. However, this research proved that IHP can help in improving the NFIP take-up 

rate, which is urgently required to keep the NFIP solvent. The evidence can help the policy makers 

to design post-disaster financial assistance more effectively so that it reaches the most at-risk 

section of the community. Previous researchers have found that disaster assistance can be 

politically motivated (Kousky et al. 2018) and contains significant procedural barriers that can 

cause disadvantages for the vulnerable population (Hooks and Miller 2006, Grube et al. 2018). 

Therefore, there is a need to make the IHP assistance more inclusive since it has a positive effect 

on the flood insurance enrollment. If the IHP assistance is designed to reach the vulnerable 

population, based on the research results, it will increase their participation in the NFIP, which 

will increase the NFIP take-up rate and revenue. At the same time, having flood insurance will 

make the vulnerable communities more resilient to future flood events.  

 Moreover, the positive effect of IHP assistance on the NFIP enrollment can go a long way. 

If through IHP assistance the NFIP enrollment can be increased, it will help the government in 

controlling uninsured flood losses as more people will have flood insurance. Due to climate change, 
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the frequency and severity of natural hazards are expected to increase. Therefore, without the 

increase in NFIP enrollment, the uninsured losses will increase as more people will get affected 

by natural hazards. Hence, if IHP assistance can help in improving the NFIP enrollment, the 

feedback effect (i.e., the effect of higher NFIP take-up rate on IHP assistance) will control the cost 

of running IHP in the future. The outcomes of this research can facilitate that analysis since it has 

quantified the extent to which IHP assistance influenced NFIP enrollment.  

 In the next part, this research has developed a causal model that has quantified the 

relationship between the flood risk factors and the flood insurance payout. It has been explained 

before that in order to keep the NFIP solvent, it is essential to reduce the likelihood of large payouts 

in the future. This research argued that it can be achieved through flood risk reduction. But prior 

to undertaking the risk reduction initiatives, it is necessary to understand how flood risk factors 

affect the flood insurance payouts. This research has derived those relationships based on historical 

data. The Mixed Effects Regression model demonstrates how different flood risk factors influence 

the flood insurance payout in a county. For instance, it has been found that increasing the flood 

exposure by $21.7 billion in a county will increase the average annual NFIP payout by $104.8 

million. If the infrastructure vulnerability, measured in terms of per capita public assistance payout, 

increases by $184, the average annual NFIP payout will increase by $84.3 million. Social 

vulnerability decreases people’s ability to attenuate the risk of natural hazards. Therefore, higher 

social vulnerability potentially leads to higher flood damage and subsequently higher flood 

insurance payout. If social vulnerability in a county, as quantified by the CDC, increases by 0.27, 

the average annual NFIP payout will increase by $77 million. Lastly, mobile homes are more prone 

to damage from natural hazards. If the number of mobile homes in a county increases by 7704, the 

average annual NFIP payout will increase by $90.4 million. These relationships are one of the key 

contributions of this research to the body of knowledge as it bridges the gap between flood risk 

factors and flood insurance payout.  

 These relationships can help in forecasting future NFIP payout based on different 

counterfactuals. For instance, according to FEMA’s National Risk Index, New Orleans – the 

largest city of Louisiana currently has a combined flood exposure of $74.7 billion ($45.5 billion 

from coastal flood and $29.2 billion from river flood) (Zuzak et al. 2021). The 1st Street Foundation 

predicted that in 30 years the number of properties within the 100-year flood zone in New Orleans 

will increase by approximately 67% from 66131 to 110236 (1st Street Foundation 2023). Assuming 
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that the coastal flood exposure will increase at the same rate, the combined flood exposure in New 

Orleans, Louisiana will become $124.5 billion by 2030, i.e., an increase by $49.8 billion. Based 

on the developed causal model, this increase in flood exposure will increase the average annual 

NFIP payout by $241 million ($;H.B	@.88.75
$%$.>	@.88.75

× $104.8	𝑚𝑖𝑙𝑙𝑖𝑜𝑛) if everything else remains the same 

as present. It should be noted that this is a conservative estimate since it does not take into account 

the price inflation of homes in the calculation. The S&P CoreLogic Case-Shiller U.S. National 

Home Price NSA Index monitors the fluctuations in the value of the U.S. residential housing 

market by monitoring single-family home purchase prices. The S&P Dow Jones Indices LLC 

(2023) records show the index has increased by approximately 4 times from 76.4 in January 1993 

to 305.1 in May 2023. If the increase in the housing price follows the same historical trend, it will 

become 4 times of the present price in the next 30 years. If the housing price increases by 4 times, 

the combined effect of housing price inflation and increased flood exposure by 67% will increase 

the expected annual NFIP payout by $2.04 billion. The research results facilitate this type of 

analysis.  

On the other hand, the relationships can be utilized to quantify the impact of a risk reduction 

strategy or policy on the annual NFIP payout. Before implementing a strategy, it is essential to 

estimate the benefit and cost associated with that strategy. Benefits from a strategy can be 

calculated as the reduction of possible losses due to the implementation of the strategy 

(Bhattacharyya et al. 2021). The causal model developed in this research can be useful for that 

benefit analysis. For instance, if property buyout reduces the exposure by 1% in New Orleans, it 

will reduce the expected annual NFIP payout by $20 million, i.e., 1% of $2.04 billion. Additionally, 

if multiple policies are planned to mitigate different flood risk factors, the causal model can be 

utilized to find the optimal mix of different policies and strategies that can maximize the benefits 

in terms of reducing future payout under different constraint such as budget, etc. 

 Lastly, this research has developed a predictive model that can predict the future annual 

NFIP payout in a county with reasonable accuracy. This model was utilized to predict the NFIP 

claims after Hurricane Ida and as it has been explained previously, it predicted the claim amount 

with very high accuracy. The predictive model can be used by FEMA and other public agencies to 

understand the extent of NFIP claims in future year, which can help them to improve their financial 

preparedness for future disasters. Moreover, by estimating the flood insurance claim amount, the 

developed predictive model can also help in estimating the uninsured loss amount.  
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 To summarize, this research was intended to make and/or keep the NFIP financially viable 

in the long term so that the U.S. federal government can continue to provide subsidized flood 

insurance to homeowners. To do that, this research identified three fundamental questions that 

required answering. They are (1) how to improve the NFIP take-up rate so that more revenue can 

be generated, (2) how to reduce the likelihood of large payouts so that the program remains solvent 

despite the increasing frequency of natural hazards, and (3) how to predict future payout so that 

NFIP can be financially prepared for that. The research outcomes showed that contrary to the 

popular belief, post-disaster federal assistance can increase the NFIP enrollment. This insight can 

have a significant impact in the way post-disaster federal assistance is planned and disbursed. If it 

reaches the most at-risk population and helps them to get back on their feet after a disaster, the 

results indicate that they will be encouraged to buy and maintain flood insurance in the future. 

There are two benefits from this. First, having flood insurance increases the ability to recover from 

disasters. Therefore, if the most at-risk population are insured by the NFIP, it will increase their 

resilience for future flood events. Secondly, as more people purchase flood insurance, it will 

generate more revenue, which will help the NFIP to remain financially viable and solvent. At the 

same time, the NFIP needs to plan and undertake different risk reduction strategies, policies, or a 

combination of the two. The research results will help in planning those strategies. This research 

contributes to the body of knowledge by quantifying the causal relationships between the identified 

flood risk factors and flood insurance payout, which has not been done previously. Lastly, the 

predictive model can help the NFIP to prepare for future flood insurance claims. 

 Based on the analysis, this research recommends a number of policies that can be 

implemented to keep the NFIP running in the long term. They are as follows. 

(1) The NFIP premiums should be risk-based. As noted by the Department of Homeland Securities, 

the majority of the flood maps currently used by the FEMA are inadequate in quantifying the 

flood risk accurately (DHS 2017). Therefore, a Catastrophe Risk Model-based actuarial 

approach is required that will calculate the flood risk for each property individually and adjust 

the premium accordingly. When analyzing the flood risk, future hazard scenarios based on 

various climate change situations should also be considered. Moreover, the premiums should 

be revised time to time so that it reflects the evolving flood risk of a property.  

(2) Since making the flood insurance premiums risk-based can increase the cost of the premium, 

the NFIP should subsidize the socially vulnerable population in addition to the existing 
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subsidies. Having a flood insurance can reduce the social vulnerability of a community as it 

augments the community’s ability to recover from a disaster and this research has shown that 

reduced vulnerability reduces the expected flood insurance payout. Therefore, the benefit of 

the subsidy can be realized in terms of reduction of future payout.  

(3) Risk reduction is necessary. The NFIP should spend a part of the proceedings to finance risk 

reduction and resilience. Since this research recommends that the NFIP premiums be risk-

based, by reducing the risk, the NFIP can charge lesser premium to homeowners. The reduced 

premium can boost the demand for flood insurance, which will subsequently help in improving 

the flood insurance take-up rate. Through risk reduction, the NFIP can reduce the likelihood 

of future payout and increase the demand for flood insurance. This will keep the NFIP solvent 

in the long term. Risk reduction initiatives such as dams and levees along with risk-based 

premiums can improve the private participation in the U.S. flood insurance market. As noted 

by Kousky (2018), private insurers struggle to keep up with the subsidized rate that NFIP 

charges. If NFIP premiums are risk-based, they should be comparable with premiums charged 

by private insurers. This can help to improve private participation and therefore, improve risk 

sharing between public and private entities.  

(4) Disaster impacts are disproportionate. The losses suffered by racial and ethnic minority groups, 

poor communities, etc., are generally higher due to lack of inherent resilience. As a result, 

disasters often increase social vulnerability. Since it has been found that post-disaster federal 

assistance encourages the disaster survivors to insure themselves against future floods, 

assistance could be designed so that it reaches the socially vulnerable population. It has been 

explained before that encouraging the socially vulnerable population to insure themselves can 

have long term benefits as it reduces the likelihood of large payouts by reducing social 

vulnerability.  

(5) The existing debts of the NFIP to the U.S. treasury should be written off. The NFIP pays 

hundreds of millions each year as interest on its debts. This money can be spent on funding 

risk reduction and resilience initiatives. The risk reduction and resilience can reduce large 

future payouts thus keeping the program solvent. The money could also be spent on 

transferring additional flood risk through further purchasing reinsurance and CAT bonds.  

(6) The government should explore the possibility of mandating flood insurance for all properties 

located in 100-year floodplains, regardless of their mortgage situation. Currently, flood 
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insurance is only required for properties in a 100-year flood zone with active federal mortgages, 

leading to homeowners discontinuing insurance once their mortgages are paid off. 1st Street 

Foundation estimated that in 2020, there were 14.6 million properties within 100-year flood 

zones and an additional 7.2 million between 100-year and 500-year flood zones (1st Street 

Foundation 2020). By mandating insurance for properties within 100-year flood zones and 

extending the existing regulation to 500-year flood zones, new construction in floodplains 

could be discouraged, and the number of NFIP policies could be increased significantly, 

helping to keep the program solvent in the long term.  

(7) Lastly, awareness programs are necessary to improve new homeowners’ understanding about 

the present and future flood risk in a location. As explained previously, new constructions in 

floodplains in many U.S. cities are increasing and many homeowners are not fully informed 

about the flood risk at those locations (1st Street Foundation 2020). Therefore, there is a need 

to increase flood awareness among the new homeowners so that they avoid buying homes that 

are at risk of flooding. The federal government can also enforce certain regulations on real 

estate companies that force them to disclose previous flood events, current, and future flood 

risk at the location so that homeowners are fully aware of the existing and future flood risk at 

their homes.  

6.2 Research Limitations 

Like any research, there are certain limitations to this research. They are listed below.  

(1) First of all, this research has produced three macro-level models that were developed at the 

county level. Like any macro-level analysis, this research does not take into account the micro-

level nuances such as household income, education, etc. Instead, this research has considered 

those variables at macro-level. Evidently, some information was lost due to this aggregation. 

However, micro-level models are expensive and require vast data collection, which is the 

reason this research chose macro-level analysis.  

(2) Like any data-driven analysis, the outcomes of this research are dependent on the data used in 

conducting the analysis. As more data becomes available, they should be incorporated into the 

models and that might change some of the research outcomes.  

(3) The research has concluded that post-disaster federal assistance encourages NFIP enrollment. 

A part of that increase in enrollment is caused by the federal requirement of maintaining flood 
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insurance after receiving federal assistance to keep the recipients eligible for future assistance. 

However, the current research did not distinguish the effect of regulatory purchase from 

voluntary purchase. Therefore, how much NFIP enrollment was voluntary is unknown from 

this current research outcomes. To distinguish that effect, micro-level analysis is required. The 

collected data did not support that analysis.  

(4) This research has considered nine confounding variable. Ideally, the propensity score should 

balance all the confounding variables. Out of the nine confounding variables, the derived 

propensity score achieved balance for eight of them that excluded the IHP approval rate. This 

can be considered another limitation of the analysis. Additionally, the list of confounding 

variables is not exhaustive. Other confounding variables can also be considered.  

(5) This research requires accurate estimation of flood damage. Despite several available tools and 

methodologies, accurate flood damage estimation is a challenging task, which is a limitation 

to this research. It should be noted that this research did not calculate the damage from previous 

flood events. It rather used NOAA’s flood damage estimation in the analysis. Therefore, the 

any inaccuracy in NOAA’s flood damage estimation might have affected the outcomes of this 

research.  

(6) The flood exposure data used in this research is static in nature. The data was collected from 

FEMA’s National Risk Index and was only available for one year. In absence of better 

alternatives, this research has assumed that the flood exposure remained constant between 2016 

and 2021, which might not be the actual situation given the rapid changes in flood risk due to 

climate change.  

(7) The list of flood risk factors is not exhaustive. As explained previously, this research focused 

on the flood risk factors (flood exposure, infrastructure vulnerability, social vulnerability, 

community resilience, and the number of mobile homes) that can be controlled through human 

intervention. There are other factors that might influence the flood risk in a county such as soil 

conditions, terrain, elevation, etc. Since these factors cannot be controlled through human 

interventions, they were kept out of scope of this research. 

(8) The derived causal relationships are not permanent. Due to the dynamic nature of underlying 

control variables, the empirical relationships between flood risk factors and flood insurance 

payout might change in future. Therefore, the models should be updated periodically as more 

data becomes available. 
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(9) It has been explained previously that the derived causal estimates can be used to plan for 

structural measures such as building new flood protection infrastructure, etc., to reduce flood 

insurance claims. However, structural measures such as dams and levees sometimes create an 

illusion of false safety among the populations protected by those dams and levees, which leads 

to risk compensation behavior (Kundzewicz et al. 2018). Risk compensation is a popular notion 

in psychology and economics that claims people adjust their behavior based on the perceived 

risk. These structural measures often encourage developers to build new homes behind these 

levees. Again, new construction in the floodplain further increases the overall flood exposure, 

which increases flood insurance payout. The statistical models developed in this research does 

not take into account this risk compensation behavior of households that leads to a feedback 

loop between flood protection and flood exposure.  

(10) The derived prediction model required NFIP claim count estimation as it is one of the 

predictors for the regression models. This research has taken advantage of a model that has 

been proposed by Ghaedi et al. (2022). Their model could predict the number of annual flood 

insurance claims in a county with reasonable accuracy. Hence, it has been assumed that the 

number of NFIP claims can be estimated and used for the prediction purpose.  

(11) The prediction models were trained to predict annual NFIP payout up to $500 million. 

Therefore, it is not recommended to use predictions that are higher than $500 million.  

6.3 Recommendations for Future Research 

The limitations of this research can provide directions for future research on this topic. Since 

macro-models lack micro-level nuances, in future similar analysis could be conducted using 

household level data to see if the research outcomes differ due to the change in approach. The 

analysis of charity hazard can be conducted using propensity score-based methods for individual 

households. This has not been done in the past and hence, it can be explored. Researchers can also 

use choice experiments to investigate, which factors influence the demand for flood insurance at 

the micro level. Similarly, the causal model and the predictive model can be developed for each 

household. However, it will be challenging to collect the household level data to develop those 

models.  

In future, research can be conducted to see how post-disaster assistance can be designed to 

alleviate social vulnerability. As reflected in previous literature, there are certain procedural 
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barriers that hinder the access of these assistance to the vulnerable populations. It is worth 

exploring how those barriers can be broken so that the at-risk population receives the benefits of 

the assistance program. The benefits from this can go a long way as reduced social vulnerability 

will further reduce the extent of flood insurance payouts.  

Lastly, flood risk reduction is a multistakeholder process. Regarding flood resilience it has 

been established that an individual organization or stakeholder cannot successfully understand and 

resolve flood risk (Australian Public Service Commission 2012). For instance, if the government 

decides to build flood protection infrastructure, that can lead to new construction in the floodplain 

due to risk compensation behavior from the developers and households. This drastically increases 

the number of properties exposed to flood hazards. On the other hand, without any structural 

measures, the true flood risk based on actuarial estimations at a location will increase with time, 

which might make the flood insurance premiums unaffordable in the future. If the premiums are 

unaffordable, it will certainly reduce the demand for flood insurance. Therefore, solving this 

challenge will require a collaborative effort among all the stakeholders. To facilitate that, a 

multistakeholder collaboration framework that brings all the stakeholders (households, insurers, 

reinsurers, CAT bond agencies, and government) on board in planning and financing flood risk 

reduction and resilience initiatives should be explored. It will be interesting to explore if a win-

win situation can be created for all the stakeholders involved in the collaboration. Additionally, 

models are required to understand the impact of policies such as raising the cost of premium for 

new constructions in floodplain, revising the zoning code to convert parts of the floodplain into 

greenspace, etc. 
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